【題目】如圖,直線與反比例函數(shù)在第一象限內(nèi)的圖象交于、兩點,且與軸的正半軸交于點.若,的面積為,則的值為(

A. 6 B. 9 C. 12 D. 18

【答案】A

【解析】

ADx軸于D,BEx軸于E,先證明△CBE∽△CAD,利用相似比得到AD=3BE,設(shè)B(t,),利用反比例函數(shù)圖象上點的坐標特征得到A點坐標為(t,),根據(jù)反比例函數(shù)的比例系數(shù)的幾何意義得SAOD=SBOE,由于SAOD+S梯形ABED=SAOB+SBOE,所以SAOB=S梯形ABED,然后利用梯形的面積公式計算即可求得.

ADx軸于D,BEx軸于E,如圖,

BEAD,

∴△CBE∽△CAD,

=,

AB=2BC,

CB:CA=1:3,

==,

AD=3BE,

設(shè)B(t,),A點坐標為(t,),

SAOD+S梯形ABED=SAOB+SBOE,

SAOD=SBOE,= k,

SAOB=S梯形ABED= (+)(tt)=8,

解得k=6.

故答案選A.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在ABC,ADE中,∠BAC=DAE=90°,AB=AC,AD=AE,點CD,E三點在同一條直線上,連接BD,BE.以下四個結(jié)論:

BD=CE;②∠ACE+DBC=45°;③BDCE;④∠BAE+DAC=180°.其中結(jié)論正確的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+cx軸交于點A(-1,0),頂點坐標(1,n)與y軸的交點在(0,2),(0,3)之間(包含端點),則下列結(jié)論:①3a+b<0;-1≤a≤-;③對于任意實數(shù)m,a+b≥am2+bm總成立;④關(guān)于x的方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.其中結(jié)論正確的個數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,在四邊形ABCD中,AB=BC=CD=DA=5 cm,BD=8 cm.則AC= cm;

2)在寬為8 cm 的長方形紙帶上,用圖1中的四邊形設(shè)計如圖2所示的圖案.

①如果用7個圖1中的四邊形設(shè)計圖案,那么至少需要 cm長的紙帶;

②設(shè)圖1中的四邊形有x個,所需的紙帶長為y cm,求yx之間的函數(shù)表達式;

③在長為40 cm的紙帶上,按照這種方法,最多能設(shè)計多少個圖1中的四邊形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“豐收1號”小麥的試驗田是邊長為米(a>1)的正方形減去一個邊長為1米的正方形蓄水池后余下的部分,“豐收2號”小麥的試驗田是邊長為()米的正方形,兩塊試驗田里的小麥都收獲了500千克.1)哪種小麥的單位面積產(chǎn)量高?(2)高的單位面積產(chǎn)量是低的單位面積產(chǎn)量的多少倍?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線軸負半軸交于點,與軸交于點,點在點的右側(cè)),點是拋物線上對稱軸上的一動點,且的面積為

(1)的值;

(2)的面積為,直接寫出點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(10分)某工廠計劃在規(guī)定時間內(nèi)生產(chǎn)24000個零件,若每天比原計劃多生產(chǎn)30個零件,則在規(guī)定時間內(nèi)可以多生產(chǎn)300個零件.

1)求原計劃每天生產(chǎn)的零件個數(shù)和規(guī)定的天數(shù).

2)為了提前完成生產(chǎn)任務(wù),工廠在安排原有工人按原計劃正常生產(chǎn)的同時,引進5組機器人生產(chǎn)流水線共同參與零件生產(chǎn),已知每組機器人生產(chǎn)流水線每天生產(chǎn)零件的個數(shù)比20個工人原計劃每天生產(chǎn)的零件總數(shù)還多20%,按此測算,恰好提前兩天完成24000個零件的生產(chǎn)任務(wù),求原計劃安排的工人人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,解一元一次方程,可以把它轉(zhuǎn)化為兩個一元一次方程來解,其實用“轉(zhuǎn)化”的數(shù)學思想,我們還可以解一些新的方程,例如一元三次方程x3+x2﹣2x=0,可以通過因式分解把它轉(zhuǎn)化為x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.

(1)方程x3+x2﹣2x=0的解是x1=0,x2=   ,x3=   

(2)用“轉(zhuǎn)化”思想求方程=x的解.

(3)如圖,已知矩形草坪ABCD的長AD=14m,寬AB=12m,小華把一根長為28m的繩子的一端固定在點B處,沿草坪邊沿BA、AD走到點P處,把長繩PB段拉直并固定在點P處,然后沿草坪邊沿PD、DC走到點C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點C處,求AP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于A、B兩點,A點坐標是(﹣2,1),B點坐標(1,n);

(1)求出k,b,m,n的值;

(2)求AOB的面積;

(3)直接寫出一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值的x的取值范圍.

查看答案和解析>>

同步練習冊答案