【題目】如圖,有下列判斷:①A與1是同位角;②A與B是同旁內角;③4與1是內錯角;④1與3是同位角. 其中正確的是 (填序號).

【答案】①②.

【解析】

試題分析:根據(jù)同位角:兩條直線被第三條直線所截形成的角中,若兩個角都在兩直線的同側,并且在第三條直線(截線)的同旁,則這樣一對角叫做同位角.內錯角:兩條直線被第三條直線所截形成的角中,若兩個角都在兩直線的之間,并且在第三條直線(截線)的兩旁,則這樣一對角叫做內錯角.同旁內角:兩條直線被第三條直線所截形成的角中,若兩個角都在兩直線的之間,并且在第三條直線(截線)的同旁,則這樣一對角叫做同旁內角作答.

解:①由同位角的概念得出:A與1是同位角;

②由同旁內角的概念得出:A與B是同旁內角;

③由內錯角的概念得出:4與1不是內錯角,錯誤;

④由內錯角的概念得出:1與3是內錯角,錯誤.

故正確的有2個,是①②.

故答案為:①②.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校需購買一批課桌椅供學生使用,已知A型課桌椅230元/套,B型課桌椅200元/套.
(1)該校購買了A,B型課桌椅共250套,付款53000元,求A,B型課桌椅各買了多少套?
(2)因學生人數(shù)增加,該校需再購買100套A,B型課桌椅,現(xiàn)只有資金22000元,最多能購買A型課桌椅多少套?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為半圓直徑,O為圓心,C為半圓上一點,E是弧AC的中點,OE交弦AC于點D,若AC=8cm,DE=2cm,求OD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個兩位數(shù),十位數(shù)字是a,十位數(shù)字比個位數(shù)字小2,這個兩位數(shù)是( 。

A.aa+2B.10aa+2C.10a+a+2D.10a+a2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一個兩位正整數(shù)m的個位數(shù)為8,則稱m好數(shù)”.

1)求證:對任意好數(shù)”m,m2-64一定為20的倍數(shù);

2)若m=p2-q2,且p,q為正整數(shù),則稱數(shù)對(p,q)友好數(shù)對,規(guī)定: ,例如68=182-162,稱數(shù)對(18,16)為友好數(shù)對,則,求小于50好數(shù)中,所有友好數(shù)對H(m)的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,對角線AC、BD交于點O,并且∠DAC=60°,∠ADB=15°.點E是AD邊上一動點,延長EO交BC于點F.當點E從D點向A點移動過程中(點E與點D,A不重合),則四邊形AFCE的變化是(
A.平行四邊形→矩形→平行四邊形→菱形→平行四邊形
B.平行四邊形→菱形→平行四邊形→矩形→平行四邊形
C.平行四邊形→矩形→平行四邊形→正方形→平行四邊形
D.平行四邊形→矩形→菱形→正方形→平行四邊形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(10)已知△ABC是等邊三角形,點D是直線BC上一點,以AD為一邊在AD的右側作等邊△ADE.

(1)如圖①,點D在線段BC上移動時,直接寫出∠BAD和∠CAE的大小關系;

(2)如圖②,點D在線段BC的延長線上移動時,猜想∠DCE的大小是否發(fā)生變化.若不變請求出其大。蝗糇兓,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人到某商店購買A型和B型兩種特惠商品,已知甲、乙兩人購買A型和B型兩種商品的件數(shù)和所花錢的總額如下表所示:

A型商品數(shù)量(件)

B型商品數(shù)量(件)

總額(元)

2

3

43

3

4

60

(1)試求A型和B型兩種商品的單價各是多少?

(2)假設兩人購買商品的件數(shù)相同,且兩人共花去了172,則甲、乙兩人購買的所有商品中,A型商品共有幾件?B型商品呢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一條筆直的高速公路上依次有3個標志點A、B、C,甲、乙兩車分別從A、C兩點同時出發(fā),勻速行駛,甲車從A→B→C,乙車從C→B→A,甲、乙兩車離B的距離y1、y2(千米)與行駛時間x(小時)之間的函數(shù)關系圖象如圖所示.觀察圖象,給出下列結論:①A、C之間的路程為690千米;②乙車比甲車每小時快30千米;③4.5小時兩車相遇;④點E的橫坐標表示兩車第二次相遇的時間;⑤點E的坐標為(7,180)其中正確的有________(把所有正確結論的序號都填在橫線上).

查看答案和解析>>

同步練習冊答案