【題目】新冠肺炎疫情發(fā)生后,為支援疫情防控,某企業(yè)研發(fā)14條口罩生產(chǎn)線,生產(chǎn)普通防護口罩和普通N95口罩,現(xiàn)日總產(chǎn)量達170萬只.已知每條生產(chǎn)線可日產(chǎn)普通防護口罩15萬只或普通N95口罩5萬只.

1)將170萬用科學記數(shù)法表示為 ;

2)這14條生產(chǎn)線中,生產(chǎn)普通防護口罩和普通N95口罩的生產(chǎn)線分別有多少條?

【答案】1;(2)普通防護口罩生產(chǎn)線10條,普通N95口罩生產(chǎn)線4條.

【解析】

1)科學記數(shù)法的表示形式為的形式,其中,為整數(shù).確定的值時,要看把原數(shù)變成時,小數(shù)點移動了多少位,的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值時,是正數(shù);當原數(shù)的絕對值時,是負數(shù);

2)設普通防護口罩生產(chǎn)線條,普通口罩的生產(chǎn)線條,根據(jù)“口罩生產(chǎn)線有14條,日總產(chǎn)量達170萬只”列出方程組求解即可.

解:(1)將170 0000用科學記數(shù)法表示為:

故答案為:

2)設這14條生產(chǎn)線中有普通防護口罩生產(chǎn)線條,普通口罩的生產(chǎn)線條,

根據(jù)題意得:,

解得:

答:這14條生產(chǎn)線中有普通防護口罩生產(chǎn)線10條,普通口罩的生產(chǎn)線4條.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了滿足學生的興趣愛好,學校決定在七年級開設興趣班,興趣班設有四類:圍棋班;象棋班;書法班;攝影班.為了便于分班,年級組隨機抽查了部分學生的選課意向(每人選報一類),并繪制了如圖所示的兩幅統(tǒng)計圖(不完整),請根據(jù)圖中信息,解答下問題:

1)求扇形統(tǒng)計圖中、的值,并補全條形統(tǒng)計圖;

2)已知該校七年級有600名學生,學校計劃開設三個“圍棋班”,每班要求不超過40人,實行隨機分班.

①學校的開班計劃是否能滿足選擇“圍棋班”的學生意愿,說明理由;

②展鵬、展飛是一對雙胞胎,他們都選擇了“圍棋班”,并且希望能分到同一個班,用樹狀圖或列表法求他們的希望得以實現(xiàn)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線軸交于點,與軸交于點,經(jīng)過、兩點的拋物線軸的另一交點

1)求該拋物線的函數(shù)表達式;

2是該拋物線上的動點,過點軸于點,交于點,軸于點,設點的橫坐標為

①求出四邊形的周長的函數(shù)表達式,并求的最大值;

②當為何值時,四邊形是菱形;

③是否存在點,使得以、、為頂點的三角形與相似?若存在,請求出滿足條件的點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某游樂園有一個直徑為16米的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線,在距水池中心3米處達到最高,高度為5米,且各方向噴出的水柱恰好在噴水池中心的裝飾物處匯合.如圖所示,以水平方向為x軸,噴水池中心為原點建立直角坐標系.

(1)求水柱所在拋物線(第一象限部分)的函數(shù)表達式;

(2)王師傅在噴水池內(nèi)維修設備期間,噴水管意外噴水,為了不被淋濕,身高1.8米的王師傅站立時必須在離水池中心多少米以內(nèi)?

(3)經(jīng)檢修評估,游樂園決定對噴水設施做如下設計改進:在噴出水柱的形狀不變的前提下,把水池的直徑擴大到32米,各方向噴出的水柱仍在噴水池中心保留的原裝飾物(高度不變)處匯合,請?zhí)骄繑U建改造后噴水池水柱的最大高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,拋物線y=ax2+bx+3經(jīng)過A(﹣3,0),B1,0)兩點,與y軸交于點C,其頂點為D,連接AD,點P是線段AD上一個動點(不與A,D重合),過點Py軸的垂線,垂足點為E,連接AE

1)求拋物線的函數(shù)解析式,并寫出頂點D的坐標;

2)如果P點的坐標為(x,y),PAE的面積為S,求Sx之間的函數(shù)關系式,直接寫出自變量x的取值范圍,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線(為常數(shù))的頂點為

(1)求點的坐標;(用含的式子表示)

(2)在同一平面直角坐標系中,存在函數(shù)圖象,點在圖象上,點在拋物線上,對于任意的實數(shù),都有點關于點對稱.

①當時,求圖象對應函數(shù)的解析式;

②當時,都有成立,結合圖象,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知拋物線y=﹣x2+bx+cy軸于點A(0,4),交x軸于點B(4,0),點P是拋物線上一動點,試過點Px軸的垂線1,再過點A1的垂線,垂足為Q,連接AP

(1)求拋物線的函數(shù)表達式和點C的坐標;

(2)若△AQP∽△AOC,求點P的橫坐標;

(3)如圖2,當點P位于拋物線的對稱軸的右側時,若將△APQ沿AP對折,點Q的對應點為點Q′,請直接寫出當點Q′落在坐標軸上時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于一個函數(shù),自變量xa時,函數(shù)值y也等于a,我們稱a為這個函數(shù)的不動點.如果二次函數(shù)yx2+2x+c有兩個相異的不動點x1、x2,且x11x2,則c的取值范圍是( )

A. c<﹣3B. c<﹣2C. cD. c1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長是3,BPCQ,連接AQ、DP交于點O,并分別與邊CD、BC交于點FE,連接AE,下列結論:①AQ⊥DP;②OA2OEOP③SAODS四邊形OECF;BP1時,tan∠OAE,其中正確結論的是_____.(請將正確結論的序號填寫在橫線上)

查看答案和解析>>

同步練習冊答案