精英家教網 > 初中數學 > 題目詳情
如圖,□AOBC的對角線交于點E,反比例函數(x>0)的圖像經過A、E兩點,若□AOBC的面積為9,則k=  ▲ 
3解析:
設A(x,),B(a,0),過A作AD⊥OB于D,EF⊥OB于F,如圖,
由平行四邊形的性質可知AE=EB,∴EF為△ABD的中位線,
由三角形的中位線定理得:EF=AD=,DF=(a-x),OF=,∴E(,),
∵E在雙曲線上,∴=k,∴a=3x,
∵平行四邊形的面積是9,∴a•=9,解得:k=3.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知:在矩形AOBC中,OB=4,OA=3.分別以OB,OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標系.F是邊BC上的一個動點(不與B,C重合),過F點的反比例函數y=
kx
(k>0)的圖象與AC邊交于點E.
(1)求證:△AOE與△BOF的面積相等;
(2)記S=S△OEF-S△ECF,求當k為何值時,S有最大值,最大值為多少?
(3)請?zhí)剿鳎菏欠翊嬖谶@樣的點F,使得將△CEF沿EF對折后,C點恰好落在OB上?若精英家教網存在,求出點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:在矩形AOBC中,OB=4,OA=3.分別以OB、OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標系.F是邊BC上的一個動點(不與B,C重合),過F點的反比例函數y=
k
x
的圖象與AC邊交于點E.現進行如下操作:將△CEF沿EF對折后,C點恰好落在OB上的D點處,過點E作EM⊥OB,垂足為M點.
(1)用含有k的代數式表示:E(
 
),F(
 
);
(2)求證:△MDE∽△FBD,并求
ED
DF
的值;
(3)求出F點坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

在矩形AOBC中,OB=6,OA=4,分別以OB,OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標系.F是BC上的一個動點(不與B、C重合),過F點的反比例函數y=
kx
(k>0)的圖象與AC邊交于點E.
(1)求證:AE•AO=BF•BO;
(2)若點E的坐標為(2,4),求經過O、E、F三點的拋物線的解析式;
(3)是否存在這樣的點F,使得將△CEF沿EF對折后,C點恰好落在OB上?若存在,求出此時的OF的長;若不存在,請說明理由.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

(11分)已知:在矩形AOBC中,OB=4,OA=3,分別以OB、OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標系,F是邊BC上的一個動點(不與B、C重合),過F點的反比例函數(k>0)的圖象與AC邊交于點E.
(1)求證:△AOE與△BOF的面積相等.
(2)記S=S△OEF-S△ECF,求當k為何值時,S有最大值,最大值為多少?
(3)請?zhí)剿鳎菏欠翊嬖谶@樣的點F,使得將△CEF沿EF對折后,C點恰好落在OB上?若存
在,請直接寫出點F的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010-2011學年河南油田中招第二次模擬考試數學試卷(解析版) 題型:解答題

已知:在矩形AOBC中,OB=4,OA=3,分別以OB、OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標系,F是邊BC上的一個動點(不與B、C重合),過F點的反比例函數(k>0)的圖象與AC邊交于點E.

(1)求證:△AOE與△BOF的面積相等.

(2)記S=S△OEF-S△ECF,求當k為何值時,S有最大值,最大值為多少?

(3)請?zhí)剿鳎菏欠翊嬖谶@樣的點F,使得將△CEF沿EF對折后,C點恰好落在OB上?若存在,請直接寫出點F的坐標,若不存在,請說明理由.

 

 

 

查看答案和解析>>

同步練習冊答案