如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸交于A(-6,0)、B(2,0),與y軸交于點(diǎn)C(0,-6).
(1)求此拋物線的函數(shù)表達(dá)式,寫出它的對稱軸;
(2)若在拋物線的對稱軸上存在一點(diǎn)M,使△MBC的周長最小,求點(diǎn)M的坐標(biāo);
(3)若點(diǎn)P(0,k)為線段OC上的一個(gè)不與端點(diǎn)重合的動(dòng)點(diǎn),過點(diǎn)P作PDCM交x于點(diǎn)D,連接MD、MP,設(shè)△MPD的面積為S,求當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí)S的值最大?
(1)拋物線與y軸交于點(diǎn)C(0,-6),
∴c=-6;
而拋物線過點(diǎn)A(-6,0)、B(2,0),
36a-6b-6=0
4a+2b-6=0

解得a=
1
2
,b=2

即此拋物線的函數(shù)表達(dá)式為y=
1
2
x2+2x-6
;
它的對稱軸為直線x=-2;

(2)∵A、B關(guān)于對稱軸直線x=-2對稱,M在對稱軸上,
∴AM=BM;
所以當(dāng)點(diǎn)A,M,C共線時(shí),△MBC的周長最小;
直線AC的解析式是:y=-x-6,
令x=-2,得y=-4,
即點(diǎn)M的坐標(biāo)為(-2,-4);

(3)點(diǎn)P(0,k)為線段OC上的一個(gè)不與端點(diǎn)重合的動(dòng)點(diǎn),
∴-6<k<0;
∵PDCM,
∴∠ODP=∠OAC,∠OPD=∠OCA,
∴△ODP△OAC,
OD
OA
=
OP
OC

而OA=OC,
∴OD=OP,即D(k,0);
∴△MPD的面積S=S△AOC-S△AMD-S△MCP-S△POD
即S=
1
2
×6×6-
1
2
×(6+k)×4-
1
2
×(6+k)×2-
1
2
×|k|2
=-
1
2
k2-3k
;
當(dāng)k=-3時(shí),S的值最大,最大值為
9
2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)C的坐標(biāo)為(0,-2),交x軸于A、B兩點(diǎn),其中A(-1,0),直線l:x=m(m>1)與x軸交于D.
(1)求二次函數(shù)的解析式和B的坐標(biāo);
(2)在直線l上找點(diǎn)P(P在第一象限),使得以P、D、B為頂點(diǎn)的三角形與以B、C、O為頂點(diǎn)的三角形相似,求點(diǎn)P的坐標(biāo)(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,在拋物線上是否存在第一象限內(nèi)的點(diǎn)Q,使△BPQ是以P為直角頂點(diǎn)的等腰直角三角形?如果存在,請求出點(diǎn)Q的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,直線L:y=-x+3與x軸、y軸分別交于點(diǎn)B、點(diǎn)C,經(jīng)過B、C兩點(diǎn)的拋物線G:y=ax2+bx+c與x軸的另一交點(diǎn)為A,頂點(diǎn)為P,且對稱軸是直線x=2.
(1)該拋物線G的解析式為______;
(2)將直線L沿y軸向下平移______個(gè)單位長度,能使它與拋物線G只有一個(gè)公共點(diǎn);
(3)若點(diǎn)E在拋物線G的對稱軸上,點(diǎn)F在該拋物線上,且以點(diǎn)A、B、E、F為頂點(diǎn)的四邊形為平行四邊形,求點(diǎn)E與點(diǎn)F坐標(biāo)并直接寫出平行四邊形的周長.
(4)連接AC,得△ABC.若點(diǎn)Q在x軸上,且以點(diǎn)P、B、Q為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,拋物線y=ax2+c(a>0)經(jīng)過梯形ABCD的四個(gè)頂點(diǎn),梯形的底AD在x軸上,其中A(-2,0),B(-1,-3).
(1)求拋物線的解析式;
(2)點(diǎn)M為y軸上任意一點(diǎn),當(dāng)點(diǎn)M到A,B兩點(diǎn)的距離之和為最小時(shí),求此時(shí)點(diǎn)M的坐標(biāo);
(3)在第(2)問的結(jié)論下,拋物線上的點(diǎn)P使S△PAD=4S△ABM成立,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)y=-x2+bx+c的圖象如圖所示,下列幾個(gè)結(jié)論:
①對稱軸為x=2;②當(dāng)y>0時(shí),x<0或x>4;③函數(shù)解析式為y=-x(x-4);④當(dāng)x≤0時(shí),y隨x的增大而增大.其中正確的結(jié)論有______(填寫序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,直線y=-
2
3
x+2
與x軸、y軸分別交于B、C兩點(diǎn),經(jīng)過B、C兩點(diǎn)的拋物線與x軸的另一交點(diǎn)坐標(biāo)為A(-1,0).

(1)求B、C兩點(diǎn)的坐標(biāo)及該拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)P在線段BC上的一個(gè)動(dòng)點(diǎn)(與B、C不重合),過點(diǎn)P作直線ay軸,交拋物線于點(diǎn)E,交x軸于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m,△BCE的面積為S.
①求S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
②求S的最大值,并判斷此時(shí)△OBE的形狀,說明理由;
(3)過點(diǎn)P作直線bx軸(圖2),交AC于點(diǎn)Q,那么在x軸上是否存在點(diǎn)R,使得△PQR為等腰直角三角形?若存在,請求出點(diǎn)R的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xoy中,點(diǎn)A在y軸上坐標(biāo)為(0,3),點(diǎn)B在x軸上坐標(biāo)為(10,0),BC⊥x軸,直線AC交x軸于M,tan∠ACB=2.
(1)求直線AC的解析式;
(2)點(diǎn)P在線段OB上,設(shè)OP=x,△APC的面積為S.請寫出S關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍;
(3)探索:在線段OB上是否存在一點(diǎn)P,使得△APC是直角三角形?若存在,求出x的值,若不存在,請說明理由;
(4)當(dāng)x=4時(shí),設(shè)頂點(diǎn)為P的拋物線與y軸交于D,且△PAD是等腰三角形,求該拋物線的解析式.(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

利客來超市購進(jìn)一批20元/千克的綠色食品,如果以30元/千克銷售,那么每天可售出400千克.由銷售經(jīng)驗(yàn)知,每天銷售量y(千克)與銷售單價(jià)x(元)(x≥30)存在如圖所示的一次函數(shù)關(guān)系.
(1)試求出y與x的函數(shù)關(guān)系式;
(2)設(shè)利客來超市銷售該綠色食品每天獲得利潤p元,當(dāng)銷售單價(jià)為何值時(shí),每天可獲得最大利潤?最大利潤是多少?
(3)該超市經(jīng)理要求每天利潤不得低于4180元,請你幫助該超市確定綠色食品銷售單價(jià)x的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

用一段長為20米的籬笆圍成一個(gè)一邊靠墻的矩形菜園,墻長為12米,這個(gè)矩形的長寬各為多少時(shí),菜園的面積最大,最大面積是多少?

查看答案和解析>>

同步練習(xí)冊答案