【題目】如圖,AC是矩形ABCD的對角線,⊙O是△ABC的內(nèi)切圓,現(xiàn)將矩形ABCD按如圖所示的方式折疊,使點D與點O重合,折痕為FG.點F,G分別在邊AD,BC上,連結(jié)OG,DG.若OG⊥DG,且⊙O的半徑長為1,則下列結(jié)論不成立的是( )
A.BC﹣AB=2B.AC=2ABC.AF=CDD.CD+DF=5
【答案】C
【解析】
如圖,設(shè)⊙O與BC的切點為M,連接MO并延長MO交AD于點N,根據(jù)折疊的性質(zhì)得到OG=DG,根據(jù)全等三角形的性質(zhì)得到OM=GC=1,CD=GM=BC﹣BM﹣GC=BC﹣2即可判斷A;設(shè)AB=a,BC=b,AC=c,⊙O的半徑為r,推出⊙O是Rt△ABC的內(nèi)切圓可得r=(a+b﹣c),根據(jù)勾股定理得到BC+AB=2+4,AC==2(1+),即可判斷B;再設(shè)DF=x,在Rt△ONF中,FN=3+﹣1﹣x,OF=x,ON=1+﹣1,由勾股定理可得x=4﹣,即可判斷D和C.
解:如圖,設(shè)⊙O與BC的切點為M,連接MO并延長MO交AD于點N,
∵將矩形ABCD按如圖所示的方式折疊,使點D與點O重合,折痕為FG,
∴OG=DG,
∵OG⊥DG,
∴∠MGO+∠DGC=90°,
∵∠MOG+∠MGO=90°,
∴∠MOG=∠DGC,
在△OMG和△GCD中,
,
∴△OMG≌△GCD,(AAS),
∴OM=GC=1,CD=GM=BC﹣BM﹣GC=BC﹣2.
∵AB=CD,
∴BC﹣AB=2.故A正確;
設(shè)AB=a,BC=b,AC=c,⊙O的半徑為r,
⊙O是Rt△ABC的內(nèi)切圓可得r=(a+b﹣c),
∴c=a+b﹣2.
在Rt△ABC中,由勾股定理可得a2+b2=(a+b﹣2)2,
整理得2ab﹣4a﹣4b+4=0,
又∵BC﹣AB=2即b=2+a,代入可得2a(2+a)﹣4a﹣4(2+a)+4=0,
解得a1=1﹣(舍去),a2=1+,
∴BC+AB=2+4,
∴AB=1+,BC=3+,
∴AC==2(1+),
∴AC=2AB;故B正確;
再設(shè)DF=x,在Rt△ONF中,FN=3+﹣1﹣x=2+﹣x,OF=x,ON=1+﹣1=,
由勾股定理可得(2+﹣x)2+()2=x2,
解得x=4﹣,
∴CD﹣DF=+1﹣(4﹣)=2﹣3,CD+DF=+1+4﹣=5,故D正確;
∴AF=AD﹣DF=2﹣1,
∴AF≠CD,故C錯誤;
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=4,點E是BA延長線上一點,點M、N分別為邊AB、BC上的點,且AM=BN=1,連接CM、ND,過點M作MF∥ND與∠EAD的平分線交于點F,連接CF分別與AD、ND交于點G、H,連接MH,則下列結(jié)論正確的有( )個
①MC⊥ND;②sin∠MFC=;③(BM+DG)=AM+AG;④S△HMF=
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2-2mx+m2+m-1(m為常數(shù)).
(1)求證:不論m為何值,該二次函數(shù)的圖像與x軸總有兩個公共點;
(2)將該二次函數(shù)的圖像向下平移k(k>0)個單位長度,使得平移后的圖像經(jīng)過點(0,-2),則k的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家計劃2035年前實施新能源汽車,某公司為加快新舊動能轉(zhuǎn)換,提高公司經(jīng)濟效益,決定對近期研發(fā)出的一種新型能源產(chǎn)品進行降價促銷.根據(jù)市場調(diào)查:這種新型能源產(chǎn)品銷售單價定為200元時,每天可售出300個;若銷售單價每降低1元,每天可多售出5個.已知每個新型能源產(chǎn)品的成本為100元.
問:(1)設(shè)該產(chǎn)品的銷售單價為元,每天的利潤為元.則_________(用含的代數(shù)式表示)
(2)這種新型能源產(chǎn)品降價后的銷售單價為多少元時,公司每天可獲利32000元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,DE交AC于點E,且∠A=∠ADE.
(1)求證:DE是⊙O的切線;
(2)若AD=16,DE=10,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形ABCD在直角坐標(biāo)系中,其中AB邊在y軸上,其余各邊均與坐標(biāo)軸平行,直線l:y=x﹣5沿y軸的正方向以每秒1個單位的速度平移,在平移的過程中,該直線被正方形ABCD的邊所截得的線段長為m,平移的時間為t(秒),m與t的函數(shù)圖象如圖2所示,則圖2中b的值為( 。
A.3B.5C.6D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,點是斜邊的中點.點從點出發(fā)以的速度向點運動,點同時從點出發(fā)以一定的速度沿射線方向運動,規(guī)定當(dāng)點到終點時停止運動.設(shè)運動的時間為秒,連接、.
(1)填空:______;
(2)當(dāng)且點運動的速度也是時,求證:;
(3)若動點以的速度沿射線方向運動,在點、點運動過程中,如果存在某個時間,使得的面積是面積的兩倍,請你求出時間的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為B(3,4)、A(﹣3,2)、C(1,0),正方形網(wǎng)格中,每個小正方形的邊長是一個單位長度.
(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標(biāo)是 ;
(2)以點B為位似中心,在網(wǎng)格上畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為1:2,點C2的坐標(biāo)是 ;(畫出圖形)
(3)若M(a,b)為線段AC上任一點,寫出點M的對應(yīng)點M2的坐標(biāo) .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com