【題目】如圖,在矩形ABCD中,AB=2,BC=4,D的半徑為1.現(xiàn)將一個直角三角板的直角頂點與矩形的對稱中心O重合,繞著O點轉(zhuǎn)動三角板,使它的一條直角邊與D切于點H,此時兩直角邊與AD交于E,F(xiàn)兩點,則tanEFO的值為_____

【答案】

【解析】分析: 本題可以通過證明∠EFO=HDE,再求出∠HDE的正切值就是∠EFO的正切值.

詳解: 連接DH,OGCDG,如圖,

∵在矩形ABCD中,AB=2,BC=4,

BD==2

O是對稱中心,

OD=BD=

OGCD,

DG=CD=1,OG=BC=2,

OGO的切線,

OHD的切線,

DHOHOH=OG=2,

DH=1,

tanADB==,tanHOD==,

∵∠ADB=HOD,

OE=ED

設(shè)EHx,則ED=OE=OHEH=2x

1 +x =(2x) ,解得x=,

EH=.

又∵∠FOE=DHO=90°,

FODH

∴∠EFO=HDE,

tanEFO=tanHDE==.

點睛: 本題主要是考查切線的性質(zhì)及解直角三角形的應(yīng)用,關(guān)鍵是利用平行把已知角代換成其它相等的容易求出其正切值的角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點C為線段AB上一點,在ACM,CBN中,AC=CM,BC=CNACM=BCN=60°,連接ANCM于點E,連接BMCN于點F

求證:(1AN=BM.(2CEF是等邊三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某涌泉蜜桔長方體包裝盒的展開圖.具體數(shù)據(jù)如圖所示,且長方體盒子的長是寬的2倍.

1)展開圖的6個面分別標(biāo)有如圖所示的序號,若將展開圖重新圍成一個包裝盒,則相對的面分別是        ,        ,        ;

2)若設(shè)長方體的寬為xcm,則長方體的長為    cm,高為    cm;(用含x的式子表示)

3)求這種長方體包裝盒的體積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,的三個頂點的位置如圖所示,現(xiàn)將沿的方向平移,使得點移至圖中的點的位置.

1)在直角坐標(biāo)系中,畫出平移后所得(其中、分別是、的對應(yīng)點).

2)(1)中所得的點,的坐標(biāo)分別是________________

3)直接寫出的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y1=ax2+bx+c(a≠0)的頂點坐標(biāo)A(﹣1,3),與x軸的一個交點B(﹣4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結(jié)論:①2a﹣b=0;abc<0;③拋物線與x軸的另一個交點坐標(biāo)是(3,0);④方程ax2+bx+c﹣3=0有兩個相等的實數(shù)根;⑤當(dāng)﹣4<x<﹣1時,則y2<y1

其中正確的是( 。

A. ①②③ B. ①③⑤ C. ①④⑤ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在大課間活動中,體育老師隨機抽取了七年級甲、乙兩班部分女學(xué)生進(jìn)行仰臥起坐的測試,并對成績進(jìn)行統(tǒng)計分析,繪制了頻數(shù)分布表和統(tǒng)計圖,請你根據(jù)圖表中的信息完成下列問題:

頻數(shù)

頻率

第一組(0x15)

3

0.15

第二組(15x30)

6

a

第三組(30x45)

7

0.35

第四組(45x60)

b

0.20

(1)頻數(shù)分布表中a=_____,b=_____,并將統(tǒng)計圖補充完整;

(2)如果該校七年級共有女生180人,估計仰臥起坐能夠一分鐘完成3030次以上的女學(xué)生有多少人?

(3)已知第一組中只有一個甲班學(xué)生,第四組中只有一個乙班學(xué)生,老師隨機從這兩個組中各選一名學(xué)生談心得體會,則所選兩人正好都是甲班學(xué)生的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AD=3,CD=4,點ECD上,且DE=1.

(1)感知:如圖①,連接AE,過點EEFAE,交BC于點F,連接AE,易證:△ADE≌△ECF(不需要證明);

(2)探究:如圖②,點P在矩形ABCD的邊AD上(點P不與點A、D重合),連接PE,過點EEFPE,交BC于點F,連接PF.求證:△PDE和△ECF相似;

(3)應(yīng)用:如圖③,若EFAB于點F,EFPE,其他條件不變,且△PEF的面積是6,則AP的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知D,E分別為邊BC,AD的中點,且SABC=4 cm2,則△BEC的面積為(  )

A. 2 cm2 B. 1 cm2 C. 0.5 cm2 D. 0.25 cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】幻方是一種將數(shù)字排在正方形格子中,使每行、每列和每條對角線上的數(shù)字和都相等的模型.?dāng)?shù)學(xué)課上,老師在黑板上畫出一個幻方如圖所示,并設(shè)計游戲:一人將一顆能粘在黑板上的磁鐵豆隨機投入幻方內(nèi),另一人猜數(shù),若所猜數(shù)字與投出的數(shù)字相符,則猜數(shù)的人獲勝,否則投磁鐵豆的人獲勝.猜想的方法從以下兩種中選一種:

猜“是大于的數(shù)”或“不是大于的數(shù)”;

猜“是的倍數(shù)”或“不是的倍數(shù)”;

如果輪到你猜想,那么為了盡可能獲勝,你將選擇哪--種猜數(shù)方法?怎么猜?為什么?

查看答案和解析>>

同步練習(xí)冊答案