【題目】已知關(guān)于的一元二次方程.
(1)求證:該方程有兩個實數(shù)根;
(2)若該方程的兩個實數(shù)根、滿足,求的值.
【答案】(1)該方程有兩個的實數(shù)根;(2)m=±4.
【解析】試題分析:(1)求出△=b2﹣4ac的值,判定△≥0即可;
(2)根據(jù)根與系數(shù)的關(guān)系可得x1+x2=4,再結(jié)合條件2x1+x2=2可得x1=﹣2,然后再把x的值代入方程可得4+8﹣m2+4=0,再解即可.
試題解析:(1)證明:∵△=(﹣4)2﹣4×1×(﹣m2+4)=16+4m2﹣16=4m2≥0,∴該方程有兩個實數(shù)根;
(2)∵方程的兩個實數(shù)根x1、x2,∴x1+x2=4.∵2x1+x2=2,∴x1+4=2,x1=﹣2,把x1=﹣2代入x2﹣4x﹣m2+4=0得:4+8﹣m2+4=0,m=±4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料一:一個正整數(shù)x能寫成x=a2﹣b2(a,b均為正整數(shù),且a≠b),則稱x為“雪松數(shù)”,a,b為x的一個平方差分解,在x的所有平方差分解中,若a2+b2最大,則稱a,b為x的最佳平方差分解,此時F(x)=a2+b2.
例如:24=72﹣52,24為雪松數(shù),7和5為24的一個平方差分解,32=92﹣72,32=62﹣22,因為92+72>62+22,所以9和7為32的最佳平方差分解,F(xiàn)(32)=92+72
材料二:若一個四位正整數(shù),它的千位數(shù)字與個位數(shù)字相同,百位數(shù)字與十位數(shù)字相同,但四個數(shù)字不全相同,則稱這個四位數(shù)為“南麓數(shù)”.例如4334,5665均為“南麓數(shù)”.
根據(jù)材料回答:
(1)請直接寫出兩個雪松數(shù),并分別寫出它們的一對平方差分解;
(2)試證明10不是雪松數(shù);
(3)若一個數(shù)t既是“雪松數(shù)”又是“南麓數(shù)”,并且另一個“南麓數(shù)”的前兩位數(shù)字組成的兩位數(shù)與后兩位數(shù)字組成的兩位數(shù)恰好是t的一個平方差分解,請求出所有滿足條件的數(shù)t中F(t)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABOC放置在直角坐標(biāo)系中,點A(10,4),點B(6,0),反比例函數(shù)y=(x>0)的圖象經(jīng)過點C.
(1)求該反比例函數(shù)的表達(dá)式.
(2)記AB的中點為D,請判斷點D是否在該反比例函數(shù)的圖象上,并說明理由.
(3)若P(a,b)是反比例函數(shù)y=的圖象(x>0)的一點,且S△POC<S△DOC,則a的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于 x的一元二次方程 x 2 x p 1 0 有兩個實數(shù)根 x1、 x2 .
(1)求 p 的取值范圍;
(1)若,求 p 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,∠BAC=120°,E 為 BC 上一點,以 CE 為直徑作⊙O 恰好經(jīng)過 A、C 兩點, PF⊥BC 交 BC 于點 G,交 AC 于點 F.
(1)求證:AB 是⊙O 的切線;
(2)如果 CF =2,CP =3,求⊙O 的直徑 EC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列是幼兒園小朋友用火柴棒拼出的一列圖形.
仔細(xì)觀察,找出規(guī)律,解答下列各題:
(1)第4個圖中共有______根火柴,第6個圖中有______根火柴;
(2)第個圖形中共有______根火柴(用含的式子表示);
(3)請計算第2008個圖形中共有多少根火柴?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD 中,∠ADB=90°,點 E 為 AB 邊的中點,點 F 為CD 邊的中點.
(1)求證:四邊形 DEBF 是菱形;
(2)當(dāng)∠A 等于多少度時,四邊形 DEBF 是正方形?并說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)(k為常數(shù),k≠0)的圖象經(jīng)過點A(2,3).
(1)求這個函數(shù)的解析式;
(2)判斷點B(-1,6),C(3,2)是否在這個函數(shù)的圖象上,并說明理由;
(3)當(dāng)-3<x<-1時,求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+3與x軸、y軸分別相交于A、C兩點,過點B(6,0),E(0,﹣6)的直線上有一點P,滿足∠PCA=135°.
(1)求證:四邊形ACPB是平行四邊形;
(2)求直線BE的解析式及點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com