C
分析:①∠AED=90°-∠EAD,∠ADC=90°-∠DAC,∠EAD=∠DAC;
②易證△ADE∽△ACD,得DE:DA=DC:AC=3:AC,AC不一定等于4;
③當FC⊥AB時成立;
④連接DM,可證DM∥BF∥AC,得FM:MC=BD:DC=4:3;易證△FMB∽△CMA,得比例線段求解.
解答:
解:①∠AED=90°-∠EAD,∠ADC=90°-∠DAC,
∵AD平分∠BAC
∴∠EAD=∠DAC,
∴∠AED=∠ADC.
故本選項正確;
②∵∠EAD=∠DAC,∠ADE=∠ACD=90°,∴△ADE∽△ACD,得DE:DA=DC:AC=3:AC,但AC的值未知,
故不一定正確;
③由①知∠AED=∠ADC,
∴∠BED=∠BDA,
又∵∠DBE=∠ABD,
∴△BED∽△BDA,
∴DE:DA=BE:BD,由②知DE:DA=DC:AC,
∴BE:BD=DC:AC,
∴AC•BE=BD•DC=12.
故本選項正確;
④連接DM,則DM=MA.
∴∠MDA=∠MAD=∠DAC,
∴DM∥BF∥AC,
由DM∥BF得FM:MC=BD:DC=4:3;
由BF∥AC得△FMB∽△CMA,有BF:AC=FM:MC=4:3,∴3BF=4AC.
故本選項正確.
綜上所述,①③④正確,共有3個.
故選C.
點評:此題重點考查相似三角形的判定和性質(zhì),綜合性強,證明△ADE∽△ACD和△FMB∽△CMA是解決本題的關(guān)鍵.