如圖,圓錐底面半徑OA=10㎝,母線PA=30㎝.由底面周長(zhǎng)上一點(diǎn)A出發(fā)繞其側(cè)面一周的最短路線長(zhǎng)度是多少?
30
解:設(shè)側(cè)面展開(kāi)圖圓心角度數(shù)為n
則2π·10=
∴n=120°
由題意可知,“最短距離”為線段AA1的長(zhǎng)
作PH⊥AA1于H則∠APH=60°
在Rt△APH中
Sin60°==
∴AH=15
∴AA1=2AH=30
∴在側(cè)面上的最短路線長(zhǎng)度是30㎝.
思路剖析:解決側(cè)面上的問(wèn)題常作展開(kāi)圖,把立體問(wèn)題轉(zhuǎn)化為平面問(wèn)題來(lái)研究
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在以O(shè)為圓心的兩個(gè)同心圓中,大圓的弦AB與小圓相切于C點(diǎn),sinA=,OA=10cm,則AB長(zhǎng)為        cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在⊙O中,AB為直徑,點(diǎn)C為圓上一點(diǎn),將劣弧沿弦AC翻折交AB于點(diǎn)D,連結(jié)CD.如圖,若點(diǎn)D與圓心O重合,AC=2,求⊙O的半徑r;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一點(diǎn)O,使OB=OC,以O(shè)為圓心,OB為半徑作圓,過(guò)C作CD∥AB交⊙O于點(diǎn)D,連接BD。
(1)猜想AC與⊙O的位置關(guān)系,并證明你的猜想;
(2)試判斷四邊形BOCD的形狀,并證明你的判斷;
(3)已知AC=6,求扇形OBC圍成的圓錐的底面圓半徑。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,圓錐的母線長(zhǎng)為2,底面圓的周長(zhǎng)為3,則該圓錐的側(cè)面積為(  )
A.3πB.3C.6πD.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在半徑為5的⊙O中,AB,CD是互相垂直的兩條弦,垂足為P,且AB=CD=8,則OP的長(zhǎng)為(     )
A.3B.4C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖.在△ABC中,∠B=90°,∠A=30°,AC=4cm,將△ABC繞頂點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)至△A'B'C的位置,且A、C、B'三點(diǎn)在同一條直線上,則點(diǎn)A所經(jīng)過(guò)的最短路線的長(zhǎng)為

A、       B、8cm     C、        D、

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,△ABC的頂點(diǎn)A、B、C、均在⊙O上,若∠ABC+∠AOC=90°,則∠AOC的大小是(  )

A.30°         B.45°              C.60°           D.70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,以等邊三角形ABC的BC邊為直徑畫(huà)半圓,分別交AB、AC于點(diǎn)E、D,DF是圓的切線,過(guò)點(diǎn)F作BC的垂線交BC于點(diǎn)G.若AF的長(zhǎng)為2,則FG的長(zhǎng)為

A.4          B.6             C.            D.

查看答案和解析>>

同步練習(xí)冊(cè)答案