【題目】圖形變換中的數(shù)學(xué),問(wèn)題情境:在課堂上,興趣學(xué)習(xí)小組對(duì)一道數(shù)學(xué)問(wèn)題進(jìn)行了深入探究,在Rt△ABC中,∠ACB=90°,∠A=30°,點(diǎn)D是AB的中點(diǎn),連接CD.
(1)探索發(fā)現(xiàn):
如圖①,BC與BD的數(shù)量關(guān)系是;
(2)猜想驗(yàn)證:
如圖②,若P是線段CB上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B,C重合),連接DP,將線段DP繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)60°,得到線段DF,連接BF,請(qǐng)猜想BF,BP,BD三者之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)拓展延伸:
若點(diǎn)P是線段CB延長(zhǎng)線上一動(dòng)點(diǎn),按照(2)中的作法,請(qǐng)?jiān)趫D③中補(bǔ)全圖象,并直接寫(xiě)出BF、BP、BD三者之間的數(shù)量關(guān)系.
【答案】
(1)BC=BD
(2)
解:BF+BP=BD,
理由:∵∠ACB=90°,∠A=30°,
∴∠CBA=60°,BC= AB,
∵點(diǎn)D是AB的中點(diǎn),
∴BC=BD,
∴△DBC是等邊三角形,
∴∠CDB=60°,DC=DB,
∵線段DP繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)60°,得到線段DF,
∴∠PDF=60°,DP=DF,
∴∠CDB﹣∠PDB=∠PDF﹣∠PDB,
∴∠CDP=∠BDF,
在△DCP和△DBF中, ,
∴△DCP≌△DBF,
∴CP=BF,
∵CP+BP=BC,
∴BF+BP=BC,
∵BC=BD,
∴BF+BP=BD
(3)
解:如圖③,
關(guān)系:BF=BD+BP,
理由:∵∠ACB=90°,∠A=30°,
∴∠CBA=60°,BC= AB,
∵點(diǎn)D是AB的中點(diǎn),
∴BC=BD,
∴△DBC是等邊三角形,
∴∠CDB=60°,DC=DB,
∵線段DP繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)60°,得到線段DF,
∴∠PDF=60°,DP=DF,
∴∠CDB+∠PDB=∠PDF+∠PDB,
∴∠CDP=∠BDF,
在△DCP和△DBF中, ,
∴△DCP≌△DBF,
∴CP=BF,
∵CP=BC+BP,
∴BF=BC+BP,
∵BC=BD,
∴BF=BD+BP.
【解析】解:(1)∵∠ACB=90°,∠A=30°,
∴∠CBA=60°,BC= AB,
∵點(diǎn)D是AB的中點(diǎn),
∴BC=BD,
所以答案是:BC=BD;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知反比例函數(shù)y= (k1>0),y= (k2<0).點(diǎn)A在y軸的正半軸上,過(guò)點(diǎn)A作直線BC∥x軸,且分別與兩個(gè)反比例函數(shù)的圖象交于點(diǎn)B和C,連接OC、OB.若△BOC的面積為 ,AC:AB=2:3,則k1= , k2= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊BC,AB上的點(diǎn),且CE=BF.連接DE,過(guò)點(diǎn)E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.
(1)請(qǐng)判斷:FG與CE的數(shù)量關(guān)系是 , 位置關(guān)系是;
(2)如圖2,若點(diǎn)E,F(xiàn)分別是邊CB,BA延長(zhǎng)線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)作出判斷并給予證明;
(3)如圖3,若點(diǎn)E,F(xiàn)分別是邊BC,AB延長(zhǎng)線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)直接寫(xiě)出你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+3的對(duì)稱軸是直線x=1.
(1)求證:2a+b=0;
(2)若關(guān)于x的方程ax2+bx﹣8=0的一個(gè)根為4,求方程的另一個(gè)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為加強(qiáng)中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識(shí)競(jìng)賽,為獎(jiǎng)勵(lì)在競(jìng)賽中表現(xiàn)優(yōu)異的班級(jí),學(xué)校準(zhǔn)備從體育用品商場(chǎng)一次性購(gòu)買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),購(gòu)買1個(gè)足球和1個(gè)籃球共需159元;足球單價(jià)是籃球單價(jià)的2倍少9元.
(1)求足球和籃球的單價(jià)各是多少元?
(2)根據(jù)學(xué)校實(shí)際情況,需一次性購(gòu)買足球和籃球共20個(gè),但要求購(gòu)買足球和籃球的總費(fèi)用不超過(guò)1550元,學(xué)校最多可以購(gòu)買多少個(gè)足球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一段拋物線:y=﹣x(x﹣3)(0≤x≤3),記為C1 , 它與x軸交于點(diǎn)O,A1;將C1繞點(diǎn)A1旋轉(zhuǎn)180°得C2 , 交x軸于點(diǎn)A2;將C2繞點(diǎn)A2旋轉(zhuǎn)180°得C3 , 交x軸于點(diǎn)A3;…,如此進(jìn)行下去,直至得Cn . 若P(2014,m)在第n段拋物線Cn上,則m=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某道判斷題的五個(gè)選項(xiàng)中有兩個(gè)正確答案,該題滿分為4分,得分規(guī)則是:選出兩個(gè)正確答案且沒(méi)有選錯(cuò)誤答案得4分;只選出一個(gè)正確答案且沒(méi)有選錯(cuò)誤答案得2分;不選或所選答案中有錯(cuò)誤答案得0分.
(1)任選一個(gè)答案,得到2分的概率是;
(2)請(qǐng)利用樹(shù)狀圖或表格求任選兩個(gè)答案,得到4分的概率;
(3)如果小明只能確認(rèn)其中一個(gè)答案是正確的,此時(shí)的最佳答題策略是
A.只選確認(rèn)的那一個(gè)正確答案
B.除了選擇確認(rèn)的那一個(gè)正確答案,再任選一個(gè)
C.干脆空著都不選了.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)衛(wèi)生防疫部門(mén)要求,游泳池必須定期換水,清洗.某游泳池周五早上8:00打開(kāi)排水孔開(kāi)始排水,排水孔的排水速度保持不變,期間因清洗游泳池需要暫停排水,游泳池的水在11:30全部排完.游泳池內(nèi)的水量Q(m2)和開(kāi)始排水后的時(shí)間t(h)之間的函數(shù)圖象如圖所示,根據(jù)圖象解答下列問(wèn)題:
(1)暫停排水需要多少時(shí)間?排水孔排水速度是多少?
(2)當(dāng)2≤t≤3.5時(shí),求Q關(guān)于t的函數(shù)表達(dá)式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com