【題目】如圖,在△ABC中, , °,點(diǎn)D是線段BC上的動(dòng)點(diǎn),將線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)50°至,連接.已知AB2cm,設(shè)BD為x cm,B為y cm.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究,下面是小明的探究過(guò)程,請(qǐng)補(bǔ)充完整.(說(shuō)明:解答中所填數(shù)值均保留一位小數(shù))
(1)通過(guò)取點(diǎn)、畫圖、測(cè)量,得到了與的幾組值,如下表:
0.5 | 0.7 | 1.0 | 1.5 | 2.0 | 2.3 | ||
1.7 | 1.3 | 1.1 | 0.7 | 0.9 | 1.1 |
(2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象.
(3)結(jié)合畫出的函數(shù)圖象,解決問(wèn)題:
線段的長(zhǎng)度的最小值約為__________ ;
若 ,則的長(zhǎng)度x的取值范圍是_____________.
【答案】(1)0.9;(2)詳見(jiàn)解析;(3)0.7, .
【解析】試題分析:
(1)觀察、分析表格中的數(shù)據(jù)可知,當(dāng)取0.7和2.3時(shí),對(duì)應(yīng)的的值是相等的,而在軸上0.7和2.3這兩個(gè)數(shù)是關(guān)于1.5對(duì)稱的,1.0和2.0也是關(guān)于1.5對(duì)稱的,由此可知當(dāng)時(shí), ;
(2)把(1)中所得結(jié)果在坐標(biāo)系描出點(diǎn)(1.0,0.9),并用平滑的曲線連接所有描出的點(diǎn),即可得到該函數(shù)的圖象;
(3)①觀察圖象可知,該函數(shù)的圖象是一根拋物線,其對(duì)稱軸為直線,由此可知的最小值為0.7,即線段BD′的最小值約為0.7;②觀察(2)中所得函數(shù)圖象、分析表格中的數(shù)據(jù)可知當(dāng)BD′BD,即時(shí), 的取值范圍約為: .
試題解析:
(1)∵當(dāng)和時(shí), 的值都為,
∴函數(shù)圖象是這兩個(gè)點(diǎn)是對(duì)稱的,對(duì)稱軸為直線,
又∵也是關(guān)于直線對(duì)稱的,
∴當(dāng)時(shí), ;
(2)根據(jù)(1)所得結(jié)果在坐標(biāo)系描出點(diǎn)(1.0,0.9),并順次用平滑曲線連接圖中各點(diǎn)得到如下圖所示的函數(shù)圖象:
(3)①結(jié)合(1)、(2)可知,該函數(shù)是一個(gè)二次函數(shù)圖象的一部分,其對(duì)稱軸為直線,結(jié)合表格中的數(shù)據(jù)可知, 的最小值為0.7,即線段BD′的最小值約為0.7cm;
②觀察(2)中所得函數(shù)圖象、分析表格中的數(shù)據(jù)可知:當(dāng)BD′BD,即時(shí), 的取值范圍約為: .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列解題過(guò)程:
===-2;
==.
請(qǐng)回答下列問(wèn)題:
(1)觀察上面的解題過(guò)程,請(qǐng)直接寫出式子= ;
(2)觀察上面的解題過(guò)程,請(qǐng)直接寫出式子= ;
(3)利用上面所提供的解法,請(qǐng)求+···+的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】古代阿拉伯?dāng)?shù)學(xué)家泰比特·伊本·奎拉對(duì)勾股定理進(jìn)行了推廣研究:如圖(圖1中為銳角,圖2中為直角,圖3中為鈍角).
在△ABC的邊BC上取, 兩點(diǎn),使,則∽∽, , ,進(jìn)而可得 ;(用表示)
若AB=4,AC=3,BC=6,則 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是“作一個(gè)30°角”的尺規(guī)作圖過(guò)程.
請(qǐng)回答:該尺規(guī)作圖的依據(jù)是______________________________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,現(xiàn)有一個(gè)均勻的轉(zhuǎn)盤被平均分成6等份,分別標(biāo)有數(shù)字2、3、4、5、6、7這六個(gè)數(shù)字,轉(zhuǎn)動(dòng)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止時(shí),指針指向的數(shù)字即為轉(zhuǎn)出的數(shù)字.
求:(1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤,轉(zhuǎn)出的數(shù)字大于3的概率是多少?
(2)現(xiàn)有兩張分別寫有3和4的卡片,隨機(jī)轉(zhuǎn)動(dòng)轉(zhuǎn)盤,轉(zhuǎn)盤停止后記下轉(zhuǎn)出的數(shù)字,與兩張卡片上的數(shù)字分別作為三條線段的長(zhǎng)度.
①這三條線段能構(gòu)成三角形的概率是 .
②這三條線段能構(gòu)成等腰三角形的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于⊙C與⊙C上的一點(diǎn)A,若平面內(nèi)的點(diǎn)P滿足:射線AP與⊙C交于點(diǎn)Q(點(diǎn)Q可以與點(diǎn)P重合),且,則點(diǎn)P稱為點(diǎn)A關(guān)于⊙C的“生長(zhǎng)點(diǎn)”.
已知點(diǎn)O為坐標(biāo)原點(diǎn),⊙O的半徑為1,點(diǎn)A(-1,0).
(1)若點(diǎn)P是點(diǎn)A關(guān)于⊙O的“生長(zhǎng)點(diǎn)”,且點(diǎn)P在x軸上,請(qǐng)寫出一個(gè)符合條件的點(diǎn)P的坐標(biāo)________;
(2)若點(diǎn)B是點(diǎn)A關(guān)于⊙O的“生長(zhǎng)點(diǎn)”,且滿足,求點(diǎn)B的縱坐標(biāo)t的取值范圍;
(3)直線與x軸交于點(diǎn)M,與y軸交于點(diǎn)N,若線段MN上存在點(diǎn)A關(guān)于⊙O的“生長(zhǎng)點(diǎn)”,直接寫出b的取值范圍是_____________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時(shí),梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動(dòng),將梯子斜靠在右墻時(shí),頂端距離地面2米,則小巷的寬度為( )
A.2.2米B.2.3米C.2.4米D.2.5米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一天,小明在玩紙片拼圖游戲時(shí),發(fā)現(xiàn)利用圖①中的三種材料各若干,可以拼出一些長(zhǎng)方形來(lái)解釋某些等式,比如圖②可以解釋為等式:.
(1)則圖③可以解釋為等式: .
(2)在虛線框中用圖①中的基本圖形若干塊(每種至少用一次)拼成一個(gè)長(zhǎng)方形,使拼出的長(zhǎng)方形面積為,并請(qǐng)?jiān)趫D中標(biāo)出這個(gè)長(zhǎng)方形的長(zhǎng)和寬.
(3)如圖④,大正方形的邊長(zhǎng)為,小正方形的邊長(zhǎng)為,若用、表示四個(gè)長(zhǎng)方形的兩邊長(zhǎng)(),觀察圖案,指出以下關(guān)系式:();();(); ().其中正確的關(guān)系式的個(gè)數(shù)有 個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是中線,E是AD的中點(diǎn),過(guò)點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于F,連接CF.
(1)求證:AD=AF;
(2)如果AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com