精英家教網 > 初中數學 > 題目詳情

【題目】如圖

(1)如圖①,已知△ABC為直角三角形,∠A=90°,若沿圖中虛線剪去∠A,則∠1+∠2等于( )
A.90°
B.135°
C.270°
D.315°
(2)如圖②,已知在△ABC中,∠A=40°,剪去∠A后成四邊形,∠1+∠2=;
(3)根據(1)與(2)的求解過程,請你歸納猜想∠1+∠2與∠A的關系是;
(4)如圖③,若沒有剪掉∠A,而是把它折成如圖所示的形狀,試探究∠1+∠2與∠A的關系,并說明理由.

【答案】
(1)C
(2)220°
(3)∠1+∠2=180°+∠A
(4)解:∠1+∠2=2∠A.理由如下:
∵△EFP是由△EFA折疊得到的,
∴∠AFE=∠PFE,∠AEF=∠PEF.
∴∠1=180°-2∠AFE,∠2=180°-2∠AEF.
∴∠1+∠2=360°-2(∠AFE+∠AEF).
又∵∠AFE+∠AEF=180°-∠A,
∴∠1+∠2=360°-2(180°-∠A)=2∠A
【解析】解:(1)∵△ABC為直角三角形,
∴∠B+∠C=90°
∴∠1+∠2=360°-90°=270°
(2)∵△ABC中,∠A=40°,
∴∠B+∠C=180°-40°=140°,
∴∠1+∠2=360°-140°=220°(1)先根據三角形的內角和定理求出∠B+∠C的度數,再利用四邊形的內角和定理得出∠B+∠C+∠1+∠2=360°,計算即可求出答案。
(2)先根據三角形的內角和定理求出∠B+∠C的度數,再利用四邊形的內角和定理得出∠B+∠C+∠1+∠2=360°,計算即可求出答案。
(3)根據折疊的性質得出∠AFE=∠PFE,∠AEF=∠PEF,再根據平角的定義求出∠1=180°-2∠AFE,∠2=180°-2∠AEF,然后再求出∠1+∠2與∠A的關系即可。

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】下列調查中,適合用抽樣調查的為_________(填序號).

①了解全班同學的視力情況;

②了解某地區(qū)中學生課外閱讀的情況;

③了解某市百歲以上老人的健康情況;

④日光燈管廠要檢測一批燈管的使用壽命.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列各式計算正確的是( )
A.2a2+a3=3a5
B.(-3x2y)2÷(xy)=9x3y
C.(2b23=8b5
D.2x3x5=6x5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若點Ma+2,a-3)在y軸上,則點M的坐標為____________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在七邊形ABCDEFG中,AB,ED的延長線相交于O點.若圖中

∠1,∠2,∠3,∠4的角度和為220°,則∠BOD的度數為( )
A.40°
B.45°
C.50°
D.60°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在全運會射擊比賽的選拔賽中,運動員甲10次射擊成績的統(tǒng)計表(表1)和扇形統(tǒng)計圖如下:

命中環(huán)數

10

9

8

7

命中次數

3

2

(1)根據統(tǒng)計表(圖)中提供的信息,補全統(tǒng)計表扇形統(tǒng)計圖;

(2)已知乙運動員10次射擊的平均成績?yōu)?環(huán),方差為1.2,如果只能選一人參加比賽,你認為應該派誰去?并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】點P(4,3)所在的象限是(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知a,b,c為△ABC的三邊長,且滿足a2c2-b2c2=a4-b4,則△ABC的形狀為( )
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等腰三角形或直角三角形

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,DABC中,AB=BC=AC=12cm,現有兩點M,N分別從現有兩點M、N分別從點A、點B同時出發(fā),沿三角形的邊運動,已知點M的速度為1cm/s,點N的速度為2cm/s.當點N第一次到達B點時,M、N同時停止運動.

(1)點M、N運動幾秒后,M、N兩點重合?
(2)點M、N運動幾秒后,可得到等邊三角形△AMN?
(3)當點M、N在BC邊上運動時,能否得到以MN為底邊的等腰三角形?如存在,請求出此時M、N運動的時間.

查看答案和解析>>

同步練習冊答案