如圖,在⊙O中,弦AB,CD相交于點(diǎn)E.已知∠ECB=60°,∠AED=65°,那么∠ADE的度數(shù)是


  1. A.
    40°
  2. B.
    15°
  3. C.
    55°
  4. D.
    65°
C
分析:首先根據(jù)圓周角定理的推論,得∠A=∠ECB,再根據(jù)三角形的內(nèi)角和定理即可求得∠ADE的度數(shù).
解答:∵∠A=∠ECB,∠ECB=60°,∠AED=65°
∴∠ADE=55°
故選C.
點(diǎn)評:綜合運(yùn)用了圓周角定理的推論以及三角形的內(nèi)角和定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在⊙O中,弦AD=BC.求證:AB=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

4、如圖,在⊙O中,弦BC∥半徑OA,AC與OB相交于M,∠C=20°,則∠AMB的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在⊙M中,弦AB所對的圓心角為120度,已知圓的半徑為2cm,并建立如圖所示的直角坐精英家教網(wǎng)標(biāo)系.
(1)求圓心M的坐標(biāo);
(2)求經(jīng)過A,B,C三點(diǎn)的拋物線的解析式;
(3)設(shè)點(diǎn)P是⊙M上的一個動點(diǎn),當(dāng)△PAB為Rt△PAB時,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在⊙O中,弦AB=BC=CD,且∠ABC=140°,則∠AED=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在⊙O中,弦AB與CD相交于點(diǎn)P,連接AC、DB.
(1)求證:△PAC∽△PDB;
(2)當(dāng)
AC
DB
為何值時,
S△PAC
S△PDB
=4?

查看答案和解析>>

同步練習(xí)冊答案