【題目】如圖是單位長(zhǎng)度為1的正方形網(wǎng)格,若A,B兩點(diǎn)的坐標(biāo)分別為,.
請(qǐng)解決下列問(wèn)題:
(1)在網(wǎng)格圖中畫(huà)出平面直角坐標(biāo)系,并直接寫(xiě)出點(diǎn)C的坐標(biāo)_________.
(2)將圖中三角形ABC沿x軸向右平移1個(gè)單位,再沿y軸向上平移2個(gè)單位后得到三角形,則的坐標(biāo)為_(kāi)________;的坐標(biāo)為_(kāi)________;的坐標(biāo)為_(kāi)________;
(3)在y軸上是否存在點(diǎn)P,使得三角形的面積為4,若存在,請(qǐng)直接寫(xiě)出P點(diǎn)坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)圖略, ;(2),,;(3)存在,.
【解析】
(1)利用A、B點(diǎn)的坐標(biāo)建立平面直角坐標(biāo)系,然后寫(xiě)出點(diǎn)C的坐標(biāo);
(2)利用點(diǎn)平移的坐標(biāo)變換規(guī)律分別寫(xiě)出點(diǎn)A1、B1、C1的坐標(biāo),然后描點(diǎn)即可;
(3)設(shè)P(0,t),根據(jù)三角形面積公式得到2×|t﹣6|=4,然后解絕對(duì)值方程求出t,從而得到P點(diǎn)坐標(biāo).
(1)如圖,C點(diǎn)坐標(biāo)為(﹣1,4);
(2)如圖,△A1B1C1為所作;A1的坐標(biāo)為(﹣2,4);B1的坐標(biāo)為(4,4);C1的坐標(biāo)為(0,6).
故答案為:(﹣1,4),(﹣2,4),(4,4),(0,6);
(3)存在.
設(shè)P(0,t),根據(jù)題意得:2×|t﹣6|=4,解得:t=2或t=10,所以滿足條件的P點(diǎn)坐標(biāo)為(0,2)或(0,10).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)是一個(gè)單位長(zhǎng)度).
(1)△ABC向下平移4個(gè)單位長(zhǎng)度得到的△A1B1C1,點(diǎn)C1的坐標(biāo)是 ;
(2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫(huà)出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點(diǎn)C2的坐標(biāo)是 ;(畫(huà)出圖形)
(3)△A2B2C2的面積是 平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四邊形ABCD是平行四邊形,AC、BD交于點(diǎn)O,∠1=∠2.
(1)求證:四邊形ABCD是矩形;(2)若∠BOC=120°,AB=4cm,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊型ABCD中,AB∥DC,過(guò)對(duì)角線AC的中點(diǎn)O作,分別交邊AB,CD于點(diǎn)E,F,連接CE,AF.
(1)求證:四邊形AECF是菱形;
(2)若EF=8,AE=5,求四邊形AECF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A(a,0),B(0,b),C(-a,0),且+b2-4b+4=0.
(1)求證:∠ABC=90°;
(2)∠ABO的平分線交x軸于點(diǎn)D,求D點(diǎn)的坐標(biāo).
(3)如圖,在線段AB上有兩動(dòng)點(diǎn)M、N滿足∠MON=45°,求證:BM2+AN2=MN2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在Rt△ABC中,∠BAC=90°,AD是斜邊BC上的高,BE為∠ABC的角平分線交AC于E,交AD于F,F(xiàn)G∥BD,交AC于G,過(guò)E作EH⊥CD于H,連接FH,下列結(jié)論:①四邊形CHFG是平行四邊形,②AE=CG,③FE=FD,④四邊形AFHE是菱形,其中正確的是( )
A.①②③④ B.②③④ C.①③④ D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“一帶一路”國(guó)際合作高峰論壇期間,我國(guó)同30多個(gè)國(guó)家簽署經(jīng)貿(mào)合作協(xié)議.某工廠準(zhǔn)備生產(chǎn)甲、乙兩種商品共6萬(wàn)件銷往“一帶一路”沿線國(guó)家和地區(qū),已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500元.
(1)甲種商品與乙種商品的銷售單價(jià)各多少元?
(2)若甲、乙兩種商品的銷售總收入不低于4200萬(wàn)元,則至少銷管甲種商品多少萬(wàn)件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠ACD=30°,BD=6,
求(1)∠BAD,∠ABC的度數(shù);
(2)求AB,AC的長(zhǎng);
(3)求菱形ABCD的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)△ABC(三角形頂點(diǎn)是網(wǎng)格線的交點(diǎn))和△A1B1C1,且△ABC與△A1B1C1,成中心對(duì)稱.
(1)畫(huà)出△ABC和△A1B1C1的對(duì)稱中心;
(2)將△A1B1C1沿直線方向向上平移6格,得到△A2B2C2,畫(huà)出△A2B2C2;
(3)將△A2B2C2繞點(diǎn)C2順時(shí)針?lè)较蛐D(zhuǎn)90°,得到△A3B3C3,畫(huà)出△A3B3C3.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com