【題目】如圖是某貨站傳送貨物的平面示意圖. 為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°. 已知原傳送帶AB長為4米.

(1)求新傳送帶AC的長度;
(2)如果需要在貨物著地點C的左側(cè)留出2米的通道,試判斷距離B點4米的貨物 是否需要挪走,并說明理由.

【答案】
(1)解:如圖,

在Rt△ABD中,AD=ABsin45°=4×=2 在Rt△ACD中,

∵∠ACD=30°,

∴AC=2AD=2×2=4

即新傳送帶AC的長度約為4


(2)解:結(jié)論:貨物MNQP不用挪走.解:在Rt△ABD中,BD=ABcos45°=4×=2,在Rt△ACD中,CD= AD=2×=2
∴CB=CD-BD=2-2≈2.1

∵PC=PB-CB≈4-2.1=1.9<2,

∴貨物MNQP不應(yīng)挪走。


【解析】(1)在直角三角形中根據(jù)三角函數(shù)的定義,求出AD的長,根據(jù)在直角三角形中,30度角所對的邊是斜邊的一半,求出AC=2AD的值;(2)在直角三角形中,求出BD=AD的值,由三角函數(shù)的定義,得到CD的值,求出CB=CD-BD、PC=PB-CB的值,得到貨物MNQP不應(yīng)挪走.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角板按圖甲的位置放置.

1)那么∠AOD和∠BOC相等嗎?請說明理由;

2)試猜想∠AOC和∠BOD在數(shù)量上有何關(guān)系?請說明理由;

3)若將這副三角板按圖乙所示擺放,三角板的直角頂點重合在點O處.上述關(guān)系還成立嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】①如圖,四邊形ABCD中,對角線相交于點O,E、F、G、H分別是AD,BD,BC,AC的中點.

1)求證:四邊形EFGH是平行四邊形;

2)當四邊形ABCD滿足一個什么條件時,四邊形EFGH是菱形?并證明你的結(jié)論;

②如圖,在RtABC中,∠ACB90°ACBC,DBC中點,CEADEBFAC,交CE的延長線與點F.求證:AB垂直平分DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)如圖下圖所示,已知AB//CD, ∠B=30°,∠D=120°;

(1)若∠E=60°,則∠E=______;

(2)請?zhí)剿鳌螮與∠F之間滿足的數(shù)量關(guān)系?說明理由.

(3)如下圖所示,已知EP平分∠BEF,FG平分∠EFD,反向延長FG交EP于點P,求∠P的度數(shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,弦DF與半徑OB相交于點P,連結(jié)EF、EO,若DE= ,∠DPA=45°.

(1)求⊙O的半徑;
(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】科幻小說《實驗室的故事》中,有這樣一個情節(jié),科學(xué)家把一種珍奇的植物分別放在不同溫度的環(huán)境中,經(jīng)過一天后,測試出這種植物高度的增長情況(如下表):

溫度 /℃

……

-4

-2

0

2

4

4.5

……

植物每天高度增長量 /mm

……

41

49

49

41

25

19.75

……

這些數(shù)據(jù)說明:植物每天高度增長量 關(guān)于溫度 的函數(shù)是反比例函數(shù)、一次函數(shù)和二次函數(shù)中的一種.
(1)你認為是哪一種函數(shù),并求出它的函數(shù)關(guān)系式;
(2)溫度為多少時,這種植物每天高度增長量最大?
(3)如果實驗室溫度保持不變,在10天內(nèi)要使該植物高度增長量的總和超過250mm,那么實驗室的溫度x應(yīng)該在哪個范圍內(nèi)選擇?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的面積為12,△ABC是等邊三角形,E在正方形ABCD內(nèi),對角線AC上有一點P使PE+PD的和最小,這個最小值為( )

A. B. C. 3 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點D.

(1)求證:BE=CF.

(2)當四邊形ACDE為菱形時,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,小明某天上午9時騎自行車離開家,15時回家,他有意描繪了離家的距離與時間的變化情況.

(1)圖象表示了哪兩個變量的關(guān)系?哪個是自變量?哪個是因變量?

(2)他到達離家最遠的地方是什么時間?離家多遠?

(3)10時到12時他行駛了多少千米?

(4)他可能在哪段時間內(nèi)休息,并吃午餐?

(5)他由離家最遠的地方返回時的平均速度是多少?

查看答案和解析>>

同步練習冊答案