如圖,某航天飛船在地球表面P點的正上方A處,從A處觀測到地球上的最遠點Q,若∠QAP=α,地球半徑為R,則航天飛船距離地球表面的最近距離AP=______.
連接OQ,
根據(jù)題意可得:AQ是⊙O的切線,
∴OQ⊥AQ,
∵∠QAP=α,地球半徑為R,
∴OA=
OQ
sin∠QAP
=
R
sinα
,
∴AP=OA-OP=
R
sinα
-R.
故答案是:
R
sinα
-R.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,形如量角器的半圓O的直徑DE=12cm,形如三角板的△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm半圓O以2cm/s的速度從左向右運動,在運動過程中,點D、E始終在直線BC上.設運動時間為t(s),當t=0s時,半圓O在△ABC的左側(cè),OC=8cm.當t為何值時,△ABC的一邊所在直線與半圓O所在的圓相切?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在以O為圓心的兩個同心圓中,大圓的弦AB是小圓的切線,點P為切點,已知AB=8,大圓半徑為5,則小圓半徑為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,圓內(nèi)接△ABC的外角∠ACH的平分線與圓交于D點,DP⊥AC,垂足是P,DH⊥BH,垂足是H,下列結(jié)論:①CH=CP;②AD=DB;③AP=BH;④DH為圓的切線.其中一定成立的是(  )
A.①②④B.①③④C.②③④D.①②③

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知AB=AC,以AB為直徑的圓O交邊BC于點D,過點D作DE⊥AC,垂足為點E.
(1)求證:DE是圓O的切線;
(2)如果∠BAC=120°,求證:DE=
1
4
BC.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,過點P引圓的兩條割線PAB和PCD,分別交圓于點A,B和C,D,連接AC,BD,則在下列各比例式中,①
PA
PB
=
PC
PD
;②
PA
PD
=
PC
PB
;③
PA
AC
=
PD
BD
,成立的有______(把你認為成立的比例式的序號都填上).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,⊙O是△ABC的外接圓,∠A=30°,AB是⊙O的直徑,過點C作⊙O的切線,交AB延長線于D,CD=3
3
cm,
(1)求⊙O的直徑;
(2)若動點M以3cm/s的速度從點A出發(fā)沿AB方向運動,同時點N以1.5cm/s的速度從B點出發(fā)沿BC方向運動.設運動的時間為t(0≤t≤2),連接MN,當t為何值時△BMN為直角三角形?并求此時該三角形的面積?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OEAB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)若⊙O的半徑為3,ED=4,EO的延長線交⊙O于F,連DF、AF,求△ADF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,BD是⊙O的直徑,OA⊥OB,M是劣弧AB上的一點,過點M作⊙O的切線MP交OA的延長線于點P,MD與OA交于點N.
(1)求證:PM=PN;
(2)若BC=3,PA=
3
5
BO,過點B作BCMP交⊙O于點C,求BO的長.

查看答案和解析>>

同步練習冊答案