【題目】如圖,拋物線與軸交于點,頂點坐標(biāo)且開口向下,則下列結(jié)論:①拋物線經(jīng)過點;②;③關(guān)于的方程有兩個不相等的實數(shù)根;④對于任意實數(shù),總成立。其中結(jié)論正確的個數(shù)為( )
A. 1個B. 2個C. 3個D. 4個
【答案】B
【解析】
逐一分析4條結(jié)論是否正確:①根據(jù)拋物線的頂點坐標(biāo),得出對稱軸為x=1,再根據(jù)拋物線的對稱性得出①正確;②根據(jù)拋物線的對稱軸為x=1,即可得出b+2a=0,再根據(jù)開口方向,即可得出②正確;③根據(jù)頂點坐標(biāo)且開口向下,得出直線與拋物線沒有交點,即可得出③錯誤;④拋物線開口向下,對稱軸為x=1,有最大值,再根據(jù)x=m時的函數(shù)值為,由此即可得出④錯誤,綜上即可得出結(jié)論.
解:①∵拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)
∴對稱軸為x=1,
∵拋物線與軸交于點,
∴則關(guān)于對稱軸x=1的對稱點的坐標(biāo)為
∴拋物線經(jīng)過點;∴①正確
②∵拋物線的對稱軸為x=1,
∴-=1,∴-2a=b,∴2a+b=0
∵開口向下,∴a
∴;
∴②正確;
③∵
∴
∵頂點坐標(biāo)且開口向下,
∴直線與拋物線沒有交點,
∴關(guān)于的方程沒有實數(shù)根;
∴③錯誤;
④∵拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,開口向下
∴當(dāng)x=1,
∵當(dāng)x=t時,y= at2+bt+c
∵為任意實數(shù)
∴≤
∴.
∴
∴④錯誤.
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為x=,且經(jīng)過點(2,0),有下列說法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是拋物線上的兩點,則y1=y2.上述說法正確的是( )
A.①②④ B.③④ C.①③④ D.①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知C(3,4),以點C為圓心的圓與y軸相切.點A、B在x軸上,且OA=OB.點P為⊙C上的動點,∠APB=90°,則AB長度的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=8,點D是邊BC上(不與B,C重合)一動點,∠ADE=∠B=a,DE交AC于點E,下列結(jié)論:①AD2=AE.AB;②1.8≤AE<5;⑤當(dāng)AD=時,△ABD≌△DCE;④△DCE為直角三角形,BD為4或6.25.其中正確的結(jié)論是_____.(把你認為正確結(jié)論序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點的坐標(biāo)為,點在第一象限,,點是上一點,,.
(1)求證:;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小區(qū)有甲、乙兩座樓房,樓間距BC為50米,在乙樓頂部A點測得甲樓頂部D點的仰角為37°,在乙樓底部B點測得甲樓頂部D點的仰角為60°,則甲、乙兩樓的高度分別為多少?(結(jié)果精確到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是上海世博園內(nèi)的一個矩形花園,花園長為100米,寬為50米,在它的四角各建有一個同樣大小的正方形觀光休息亭,四周建有與觀光休息亭等寬的觀光大道,其余部分(圖中陰影部分)種植的是不同花草.已知種植花草部分的面積為3600米2,那么矩形花園各角處的正方形觀光休息亭的邊長為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠DAB=45°,AB=2,P為線段AB上一動點,且不與點A重合,過點P作PE⊥AB交AD于點E,將∠A沿PE折疊,點A落在直線AB上點F處,連接DF、CF,當(dāng)△CDF為等腰三角形時,AP的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B以1cm/s的速度勻速運動到點B,圖2是點F運動時,△FBC的面積y(cm2)隨時間x(s)變化的關(guān)系圖象,則a的值為( )
A. B. 2 C. D. 2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com