(2006•成都)如圖,在平面直角坐標(biāo)系中,已知點(diǎn)B(-2,0),A(m,0)(-<m<0),以AB為邊在x軸下方作正方形ABCD,點(diǎn)E是線段OD與正方形ABCD的外接圓除點(diǎn)D以外的另一個(gè)交點(diǎn),連接BE與AD相交于點(diǎn)F.
(1)求證:BF=DO;
(2)設(shè)直線l是△BDO的邊BO的垂直平分線,且與BE相交于點(diǎn)G.若G是△BDO的外心,試求經(jīng)過B、F、O三點(diǎn)的拋物線的解析表達(dá)式;
(3)在(2)的條件下,在拋物線上是否存在點(diǎn)P,使該點(diǎn)關(guān)于直線BE的對(duì)稱點(diǎn)在x軸上?若存在,求出所有這樣的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】分析:(1)本題可通過全等三角形來證簡(jiǎn)單的線段相等,三角形ABF和ADO中,根據(jù)圓周角定理可得出∠ABF=∠ADO,已知了一組直角和AB=AD,因此兩三角形全等,即可得出BF=OD的結(jié)論.
(2)如果G是三角形BDO的外心,根據(jù)三角形外心定義可知BE必垂直平分OD,因此三角形BOD是等腰三角形.在等腰直角三角形ABD中,BD=BO=2,AB=OB-OA=2+m,因此可根據(jù)AB、BD的比例關(guān)系求出m的值,即可得出OA的長(zhǎng),而在(1)得出的全等三角形中,可得出OA=FG,據(jù)此可求出F點(diǎn)坐標(biāo).已知了B、F、O三點(diǎn)坐標(biāo),可用待定系數(shù)法求出拋物線的解析式.
(3)在(2)中已經(jīng)證得BE是∠OBD的角平分線,因此P點(diǎn)必為直線BD與拋物線的交點(diǎn),先求出直線BD的解析式,然后聯(lián)立拋物線的解析式可得出P點(diǎn)坐標(biāo).
解答:(1)證明:在△ABF和△ADO中,
∵四邊形ABCD是正方形,
∴AB=AD,∠BAF=∠DAO=90°.
又∵∠ABF=∠ADO,
∴△ABF≌△ADO,
∴BF=DO.

(2)解:由(1),有△ABF≌△ADO,
∵AO=AF=m.
∴點(diǎn)F(m,m).
∵G是△BDO的外心,
∴點(diǎn)G在DO的垂直平分線上.
∴點(diǎn)B也在DO的垂直平分線上.
∴△DBO為等腰三角形,
∵AB=AD,
在Rt△BAD中,由勾股定理得:BO=BD=AB.
而|BO|=2,|AB|=|-2-m|=2+m,
∴2=(2+m),
∴m=2-2
∴F(2-2,2-2).
設(shè)經(jīng)過B,F(xiàn),O三點(diǎn)的拋物線的解析表達(dá)式為y=ax2+bx+c(a≠0).
∵拋物線過點(diǎn)O(0,0),
∴c=0.
∴y=ax2+bx. ①
把點(diǎn)B(-2,0),點(diǎn)F(2-2,2-2)的坐標(biāo)代入①中,


解得
∴拋物線的解析表達(dá)式為y=x2+x.②

(3)解:假定在拋物線上存在一點(diǎn)P,使點(diǎn)P關(guān)于直線BE的對(duì)稱點(diǎn)P'在x軸上.
∵BE是∠OBD的平分線,
∴x軸上的點(diǎn)P'關(guān)于直線BE的對(duì)稱點(diǎn)P必在直線BD上,
即點(diǎn)P是拋物線與直線BD的交點(diǎn).
設(shè)直線BD的解析表達(dá)式為y=kx+b,并設(shè)直線BD與y軸交于點(diǎn)Q,則由△BOQ是等腰直角三角形.
∴|OQ|=|OB|.
∴Q(0,-2).
把點(diǎn)B(-2,0),點(diǎn)Q(0,-2)代入y=kx+b中,


∴直線BD的解析表達(dá)式為y=-x-2
設(shè)點(diǎn)P(x,y),則有y=-x-2. ③
把③代入②,得x2+x=-x-2
x2+(+1)x+2=0,
即x2+2(+1)x+4=0.
∴(x+2)(x+2)=0.
解得x=-2或x=-2.
當(dāng)x=-2時(shí),y=-x-2=2-2=0;
當(dāng)x=-2時(shí),y=-x-2=2-2
∴在拋物線上存在點(diǎn)P1(-2,0),P2(-2,2-2),它們關(guān)于直線BE的對(duì)稱點(diǎn)都在x軸上.
點(diǎn)評(píng):本題有一定的難度,綜合性也比較強(qiáng),有一定的新意,第3小問有些難度,有一定的能力要求,解這種題時(shí)需冷靜地分析題意,找到切入點(diǎn)不會(huì)很難.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(06)(解析版) 題型:解答題

(2006•成都)如圖,已知反比例函數(shù)y=(k<0)的圖象經(jīng)過點(diǎn)A(-,m),過點(diǎn)A作AB⊥x軸于點(diǎn)B,且△AOB的面積為
(1)求k和m的值;
(2)若一次函數(shù)y=ax+1的圖象經(jīng)過點(diǎn)A,并且與x軸相交于點(diǎn)C,求∠ACO的度數(shù)和|AO|:|AC|的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年四川省成都市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•成都)如圖,在平面直角坐標(biāo)系中,已知點(diǎn)B(-2,0),A(m,0)(-<m<0),以AB為邊在x軸下方作正方形ABCD,點(diǎn)E是線段OD與正方形ABCD的外接圓除點(diǎn)D以外的另一個(gè)交點(diǎn),連接BE與AD相交于點(diǎn)F.
(1)求證:BF=DO;
(2)設(shè)直線l是△BDO的邊BO的垂直平分線,且與BE相交于點(diǎn)G.若G是△BDO的外心,試求經(jīng)過B、F、O三點(diǎn)的拋物線的解析表達(dá)式;
(3)在(2)的條件下,在拋物線上是否存在點(diǎn)P,使該點(diǎn)關(guān)于直線BE的對(duì)稱點(diǎn)在x軸上?若存在,求出所有這樣的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年四川省成都市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•成都)如圖,已知反比例函數(shù)y=(k<0)的圖象經(jīng)過點(diǎn)A(-,m),過點(diǎn)A作AB⊥x軸于點(diǎn)B,且△AOB的面積為
(1)求k和m的值;
(2)若一次函數(shù)y=ax+1的圖象經(jīng)過點(diǎn)A,并且與x軸相交于點(diǎn)C,求∠ACO的度數(shù)和|AO|:|AC|的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《函數(shù)基礎(chǔ)知識(shí)》(04)(解析版) 題型:填空題

(2006•成都)如圖表示甲騎電動(dòng)自行車和乙駕駛汽車沿相同路線行駛45千米,由A地到B地時(shí),行駛的路程y(千米)與經(jīng)過的時(shí)間x(小時(shí))之間的函數(shù)關(guān)系.請(qǐng)根據(jù)這個(gè)行駛過程中的圖象填空:
汽車出發(fā)    小時(shí)與電動(dòng)自行車相遇;電動(dòng)自行車的速度為    千米/小時(shí);汽車的速度為    千米/小時(shí);汽車比電動(dòng)自行車早    小時(shí)到達(dá)B地.

查看答案和解析>>

同步練習(xí)冊(cè)答案