【題目】如圖在ABC中,∠ACB90°,ACBC,E為外角∠BCD平分線上一動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)E關(guān)于直線BC的對(duì)稱點(diǎn)為F,連接BE,連接AF并延長(zhǎng)交直線BE于點(diǎn)G

1)求證:AFBE;

2)用等式表示線段FGEGCE的數(shù)量關(guān)系,并證明.

【答案】(1)證明見解析;(2)GE2+GF22CE2.證明見解析.

【解析】

(1)根據(jù)邊角證明△FCA≌△ECB,所以AF=BE;

(2)FG,EGCE的數(shù)量關(guān)系:GE2+GF2=2CE2,先證明∠EGF=ECF=90°,然后利用勾股定理證明即可.

解:(1)如圖,連接CF

∵,∠ACB90°,CE平分∠BCD,

∴∠BCE45°,

∵點(diǎn)EF關(guān)于直線BC對(duì)稱,

CECF,

FCB=∠BCE45°,

∴∠FCA45°,

FCAECB中,

∴△FCA≌△ECBSAS),

AFBE;

2FG,EGCE的數(shù)量關(guān)系:GE2+GF22CE2,

證明:∵△FCA≌△ECB,

∴∠AFC=∠BEC,

∵∠AFC+CFG180°,

∴∠CFG+CEG180°,

∴∠ECF+EGF180°,

∵∠ECF45°+45°90°,

∴∠EGF90°,

連接EF,

GE2+GF2EF2,

CECF

CE2+CF22CE2EF2,

GE2+GF22CE2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖直線x軸、y軸分別交于點(diǎn)A,B,C的中點(diǎn),點(diǎn)D在直線上,以為直徑的圓與直線的另一交點(diǎn)為E,交y軸于點(diǎn)F,G,已知,則的長(zhǎng)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,BCAB,EAD上一點(diǎn),△ABE沿BE折疊,點(diǎn)A恰好落在線段CE的點(diǎn)F處,連結(jié)BF

1)求證:BCCE;

2)設(shè)k

k,求sinDCE的值;

設(shè)m,試求mk滿足的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,tanABC,BD為對(duì)角線,∠ABD+BDC90°,過(guò)點(diǎn)AAEBD于點(diǎn)E,連接CE,若AEDE,ECDC5,則△ABC的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是小華設(shè)計(jì)的作一個(gè)角等于已知角的2的尺規(guī)作圖過(guò)程.

已知:

求作:,使得

作法:如圖,

①在射線上任取一點(diǎn);

②作線段的垂直平分線,交于點(diǎn),交于點(diǎn);

③連接

所以即為所求作的角.

根據(jù)小華設(shè)計(jì)的尺規(guī)作圖過(guò)程,

(1)使用直尺和圓規(guī)補(bǔ)全圖形(保留作圖痕跡)

(2)完成下面的證明(說(shuō)明:括號(hào)里填寫推理的依據(jù))

證明:∵是線段的垂直平分線,

______(______)

(______)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線yax2過(guò)定點(diǎn)M,),與直線ABykx+1相交于AB兩點(diǎn).

1)若k=﹣,求△ABO的面積.

2)若k=﹣,在拋物線上的點(diǎn)P,使得△ABP的面積是△ABO面積的兩倍,求P點(diǎn)坐標(biāo).

3)將拋物線向右平移兩個(gè)單位,再向下平移兩個(gè)單位,得到拋物線C2,如題圖2,直線ykx2k+)與拋物線C2的對(duì)稱軸交點(diǎn)為G,與拋物線C2的交點(diǎn)為PQ兩點(diǎn)(點(diǎn)P在點(diǎn)Q的左側(cè)),試探究是否為定值,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB半圓O的直徑,點(diǎn)C在半圓O上,過(guò)點(diǎn)OBC的平行線交AC于點(diǎn)E,交過(guò)點(diǎn)A的直線于點(diǎn)D,且D=BAC.

1求證:AD是半圓O的切線;

2若BC=2,CE=,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,山坡上有一棵與水平面垂直的大樹,一場(chǎng)臺(tái)風(fēng)過(guò)后,大樹被刮傾斜后折斷倒在山坡上,樹的頂部恰好接觸到坡面.已知山坡的坡角∠AEF=23°,量得樹干傾斜角∠BAC=38°,大樹被折斷部分和坡面所成的角∠ADC=60°,AD=4m.求這棵大樹沒(méi)有折斷前的高度.(結(jié)果精確到個(gè)位,參考數(shù)據(jù):=14=17,=24)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在菱形中,,點(diǎn)是射線上一動(dòng)點(diǎn),以為邊向右側(cè)作等邊,點(diǎn)的位置隨點(diǎn)的位置變化而變化.

(1)如圖1,當(dāng)點(diǎn)在菱形內(nèi)部或邊上時(shí),連接的數(shù)量關(guān)系是 ,的位置關(guān)系是 ;

(2)當(dāng)點(diǎn)在菱形外部時(shí),(1)中的結(jié)論是否還成立?若成立,請(qǐng)予以證明;若不成立,

請(qǐng)說(shuō)明理由(選擇圖2,圖3中的一種情況予以證明或說(shuō)理).

(3) 如圖4,當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),連接,若 , ,求四邊形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案