【題目】如圖,在等腰梯形ABCD中,ADBCAD=3cm,BC=7cm,∠B=60°,P為下底BC邊上一點(diǎn)(不與B、C重合),連結(jié)AP,過P點(diǎn)作PEDCE,使得∠APE=B.

(1)求證:ABP∽△PCE;

(2)求腰AB的長;

(3)在底邊BC上是否存在一點(diǎn)P,使得DE:EC=5:3.如果存在,求出BP的長;如果不存在,請說明理由。

【答案】(24cm3BP=1cmBP=6cm

【解析】試題分析:(1)欲證△ABP∽△PCE,需找出兩組對應(yīng)角相等;由等腰梯形的性質(zhì)可得出∠B=∠C,根據(jù)三角形外角的性質(zhì)可證得∠EPC=∠BAP;由此得證;

2)可過作AF⊥BCF,由等腰梯形的性質(zhì)得到AFBC、AD差的一半,在Rt△ABF中,根據(jù)∠B的度數(shù)及BF的長即可求得AB的值;

3)在(2)中求得了AB的長,即可求出DEEC=53時(shí),DECE的值.設(shè)BP的長為x,進(jìn)而可表示出PC的長,然后根據(jù)(1)的相似三角形,可得出關(guān)于AB、BP、PC、CE的比例關(guān)系式,由此可得出關(guān)于x的分式方程,若方程有解,則x的值即為BP的長.若方程無解,則說明不存在符合條件的P點(diǎn).

試題解析:證明:(1∠BAP+∠BPA=120°

∠APB+∠CPE=120°

∴∠BAP=∠CPE

∠ABP=∠PCE

∴△ABP∽△PCE

2)過AD分別作AG⊥BCDH⊥BC

易得四邊形AGHD是矩形

GH=AD=3cm

cm

Rt△ABG

cm

3)由DE:EC=53

, .

△ABP∽△PCE

BP(7-BP)=6

BP=1cmBP=6cm

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡

(1)x2y﹣3x2y

(2)﹣x+(2x﹣2)﹣(3x+5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形的兩邊長分別為34,第三邊長是方程x213x+400的根,則該三角形的周長是( )

A. 12B. 13C. 15D. 1215

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將點(diǎn)A(1,1)向右平移2個(gè)單位長度得到點(diǎn)B,則點(diǎn)B關(guān)于x軸的對稱點(diǎn)B的坐標(biāo)為( )

A. (3,﹣1)B. (1,﹣1)C. (1,1)D. (1,﹣3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)多邊形的每個(gè)內(nèi)角都為108°,則它的邊數(shù)為(
A.5
B.8
C.6
D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】到數(shù)軸上表示2的點(diǎn)的距離等于3的點(diǎn)所表示的數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:4a312a2+9a_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四種說法:①頂點(diǎn)在圓心的角是圓心角;②兩個(gè)圓心角相等,它們所對的弦也相等;③兩條弧的長度相等,則這兩條弧所對的圓心角相等;④在等圓中,圓心角不等,所對的弦也不等.其中正確的是______.(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩種商品原來的單價(jià)和為100元,因市場變化,甲商品降價(jià)10%,乙商品提價(jià)40%,調(diào)價(jià)后兩種商品的單價(jià)和比原來的單價(jià)和提高了20%、若設(shè)甲、乙兩種商品原來的單價(jià)分別為x元、y元,則下列方程組正確的是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案