【題目】下列運算及判斷正確的是(  )

A. ﹣5×÷(﹣)×5=1

B. 方程(x2+x﹣1)x+3=1有四個整數(shù)解

C. 若a×5673=103,a÷103=b,則a×b=

D. 有序數(shù)對(m2+1,m)在平面直角坐標(biāo)系中對應(yīng)的點一定在第一象限

【答案】B

【解析】依據(jù)有理數(shù)的乘除混合運算法則、零指數(shù)冪、同底數(shù)冪的乘法法則以及點的坐標(biāo),進(jìn)行判斷即可得出結(jié)論.

A.﹣5×÷(﹣)×5=﹣1×(﹣5)×5=25,故錯誤;

B.方程(x2+x﹣1)x+3=1有四個整數(shù)解:x=1,x=﹣2,x=﹣3,x=﹣1,故正確;

C.若a×5673=103,a÷103=b,則a×b=,故錯誤;

D.有序數(shù)對(m2+1,m)在平面直角坐標(biāo)系中對應(yīng)的點一定在第一象限或第四象限或x軸正半軸上,故錯誤,

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,已知△ABC 中,其中 A(0,﹣2),B(2,﹣4),C(4,﹣1).

(1)畫出與△ABC 關(guān)于 y 軸對稱的圖形△A1B1C1;

(2)寫出△A1B1C1 各頂點坐標(biāo);

(3)求△ABC 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A=30°,∠B=90°,BC=6, 一個邊長為2的正方形DEFH沿邊CA方向向下平移,平移開始時點F與點C重合,當(dāng)正方形DEFH的平移距離為__________時,有DC2=AE2+BC2成立,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)如圖,一小球從斜坡O點處拋出,球的拋出路線可以用二次函數(shù)y=﹣x2+4x刻畫,斜坡可以用一次函數(shù)y=x刻畫.

1)請用配方法求二次函數(shù)圖象的最高點P的坐標(biāo);

2)小球的落點是A,求點A的坐標(biāo);

3)連接拋物線的最高點P與點O、A△POA,求△POA的面積;

4)在OA上方的拋物線上存在一點MMP不重合),△MOA的面積等于△POA的面積.請直接寫出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀:已知點A、B在數(shù)軸上分別表示有理數(shù)ab,A、B兩點之間的距離表示為|AB|=|ab|

理解:

1)數(shù)軸上表示2和﹣3的兩點之間的距離是  

2)數(shù)軸上表示x和﹣5的兩點AB之間的距離是  ;

3)當(dāng)代數(shù)式|x﹣1|+|x+3|取最小值時,相應(yīng)的x的取值范圍是  ;最小值是  

應(yīng)用:某環(huán)形道路上順次排列有四家快遞公司:A、B、C、D,它們順次有快遞車16輛,8輛,4輛,12輛,為使各快遞公司的車輛數(shù)相同,允許一些快遞公司向相鄰公司調(diào)出,問共有多少種調(diào)配方案,使調(diào)動的車輛數(shù)最少?并求出調(diào)出的最少車輛.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】聯(lián)想三角形外心的概念,我們可引入如下概念。

定義:到三角形的兩個頂點距離相等的點,叫做此三角形的準(zhǔn)外心。

舉例:如圖1,若PA=PB,則點P為△ABC的準(zhǔn)外心。

應(yīng)用:如圖2,CD為等邊三角形ABC的高,準(zhǔn)外心P在高CD上,且PD=AB,求∠APB的度數(shù)。

探究:已知△ABC為直角三角形,斜邊BC=5,AB=3,準(zhǔn)外心P在AC邊上,試探究PA的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表是隨機(jī)抽取的某公司部分員工的月收入資料.

月收入/元

45000

18000

10000

5500

5000

3400

3000

2000

人數(shù)

1

1

1

3

6

1

11

2

(1)請計算以上樣本的平均數(shù)和中位數(shù);

(2)甲乙兩人分別用樣本平均數(shù)和中位數(shù)來估計推斷公司全體員工月收入水平,請你寫出甲乙兩人的推斷結(jié)論;

(3)指出誰的推斷比較科學(xué)合理,能真實地反映公司全體員工月收入水平,并說出另一個人的推斷依據(jù)不能真實反映公司全體員工月收入水平的原因.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC,∠C=90°,AC=12BC=6,一條線段PQ=AB,PQ兩點分別在AC和過點A且垂直于AC的射線AX上運動,要使△ABC△QPA全等,則AP= ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市居民使用自來水按照如下標(biāo)準(zhǔn)收費:若每戶月用水不超過12m3,按a/m3收費;若超過12m3,但不超過20m3,則超過的部分按1.5a/m3收費;若超過20m3超過的部分按2a/m3收費

1)把相應(yīng)的收費金額填在表格里;

2)已知壯壯家上個月用水量14m3,交水費45元,求a的值;

3)在(2)的條件下,壯壯媽媽開了一個面館,工商部門規(guī)定:商業(yè)用水的價格按照居民用水價格提高50%收取,壯壯媽媽的面館預(yù)計本月用水量28m3,求壯壯媽媽的面館本月的水費.

查看答案和解析>>

同步練習(xí)冊答案