在Rt△ABC中,∠ACB=90°,D是AB邊上的一點,以BD為直徑作⊙O交AC于點E,連結(jié)DE并延長,與BC的延長線交于點F.且BD=BF.
(1)求證:AC與⊙O相切.
(2)若BC=6,AB=12,求⊙O的面積.
(1)連接OE,求出∠ODE=∠F=∠DEO,推出OE∥BC,得出OE⊥AC,根據(jù)切線的判定推出即可。
(2)16π
【解析】
分析:(1)連接OE,求出∠ODE=∠F=∠DEO,推出OE∥BC,得出OE⊥AC,根據(jù)切線的判定推出即可。
(2)證△AEO∽△ACB,得出關(guān)于半徑r的方程,求出r即可。
解:(1)證明:連接OE,
∵OD=OE,∴∠ODE=∠OED。
∵BD=BF,∴∠ODE=∠F。
∴∠OED=∠F!郞E∥BF。
∴∠AEO=∠ACB=90°。
∵OE是⊙O的半徑,∴AC與⊙O相切。
(2)由(1)知∠AEO=∠ACB,又∠A=∠A,
∴△AOE∽△ABC。
∴。
設(shè)⊙O的半徑為r,則,解得:r=4。
∴⊙O的面積π×42=16π。
科目:初中數(shù)學(xué) 來源: 題型:
A、12 | B、6 | C、2 | D、3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、9:4 | B、9:2 | C、3:4 | D、3:2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com