【題目】有這樣一個問題:探究函數(shù)的圖象與性質(zhì).下面是小文的探究過程,請補充完整:

1)函數(shù)的自變量的取值范圍是__________

2)下表是的幾組對應(yīng)值:

如圖,在平面直角坐標(biāo)系中,描出了以上表中各對應(yīng)值為坐標(biāo)的點.

①觀察圖中各點的位置發(fā)現(xiàn):點,,均關(guān)于某點中心對稱,則該點的坐標(biāo)為__________;

②小文分析函數(shù)表達(dá)式發(fā)現(xiàn):當(dāng)時,該函數(shù)的最大值為0,則該函數(shù)圖象在直線左側(cè)的最高點的坐標(biāo)為__________;

3)小文補充了該函數(shù)圖象上兩個點,.

①在上圖中描出這兩個點,并畫出該函數(shù)的圖象;

②寫出該函數(shù)的一條性質(zhì):__________.

【答案】1x≠1;(21,1);00);(3作圖見解析;當(dāng)x0時,yx的增大而增大(答案不唯一).

【解析】

1)分式的分母不等于零;

2)①根據(jù)中心對稱的性質(zhì)和所對應(yīng)的點點坐標(biāo)即可求得,

②根據(jù)函數(shù)的性質(zhì)求得即可;

3)①根據(jù)坐標(biāo)系中的點,用平滑的直線連接即可;

②可以從增減性、漸近性、連續(xù)性、與坐標(biāo)軸交點、圖象所在象限等方面作答.

解:(1)依題意得:2x-2≠0,

解得x≠1,

故答案是:x≠1

2)①點A1B1,A2B2,A3B3A4B4均關(guān)于某點中心對稱,B10,0),A122),

∴中心點點坐標(biāo)為(11);

②∵當(dāng)x1時,該函數(shù)的最大值為0,

∴該函數(shù)圖象在直線x=1左側(cè)的最高點的坐標(biāo)為(0,0);

故答案為(1,1);(0,0);

3)①

②該函數(shù)的性質(zhì):

)當(dāng)x0時,yx的增大而增大;

當(dāng)0≤x1時,yx的增大而減小;

當(dāng)1x2時,yx的增大而減;

當(dāng)x≥2時,yx的增大而增大.

)函數(shù)的圖象經(jīng)過第一、三、四象限.

)函數(shù)的圖象與直線x=1無交點,圖象由兩部分組成.

故答案為當(dāng)x0時,yx的增大而增大(答案不唯一);

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中, ,∠=90°,=28cm, =24cm, =4cm,點從點出發(fā),以1cm/s的速度向點運動,點從點同時出發(fā),以2cm/s的速度向點運動,當(dāng)其中一個動點到達(dá)端點停止運動時,另一個動點也隨之停止運動。則四邊的面積(cm2)與兩動點運動的時間(s)的函數(shù)圖象大致是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系,O為坐標(biāo)原點,點A(﹣1,0),點B(0,).

(1)求BAO的度數(shù);

(2)如圖1,將AOB繞點O順時針得A′OB′,當(dāng)A′恰好落在AB邊上時,設(shè)AB′O的面積為S1,BA′O的面積為S2,S1與S2有何關(guān)系?為什么?

(3)若將AOB繞點O順時針旋轉(zhuǎn)到如圖2所示的位置,S1與S2的關(guān)系發(fā)生變化了嗎?證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝店用4500元購進(jìn)一批襯衫,很快售完,服裝店老板又用2100元購進(jìn)第二批該款式的襯衫,進(jìn)貨量是第一次的一半,但進(jìn)價每件比第一批降低了10元.

(1)這兩次各購進(jìn)這種襯衫多少件?

(2)若第一批襯衫的售價是200/件,老板想讓這兩批襯衫售完后的總利潤不低于2100元,則第二批襯衫每件至少要售多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教師節(jié)當(dāng)天,出租車司機小王在東西向的街道上免費接送教師,規(guī)定向東為正,向西為負(fù),當(dāng)天出租車的行程如下(單位:千米)

,,,,,

1)將最后一名老師送到目的地時,小王距出發(fā)地多少千米?

2)若汽車耗油量為0.5/千米,則當(dāng)天耗油多少升?若汽油價格為6.70/升,則小王共花費了多少元錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:我們知道的幾何意義是在數(shù)軸上數(shù)對應(yīng)的點與原點的距離,即,也就是說,表示在數(shù)軸上數(shù)與數(shù)對應(yīng)點之間的距離.這個結(jié)論可以推廣為:表示在數(shù)軸上數(shù)對應(yīng)點之間的距離.

已知,求的值.

解:在數(shù)軸上與原點距離為的點的對應(yīng)數(shù)為,即的值為.

已知,求的值.

解:在數(shù)軸上與的距離為點的對應(yīng)數(shù)為,即的值為.

仿照閱讀材料的解法,解決下列問題:

(1)已知,求的值;

(2)已知,求的值;

(3)若數(shù)軸上表示的點在之間,則的值為_________;

(4)當(dāng)滿足_________時,則的值最小,最小值是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解,并完成填空:在圖1至圖3中,己知的面積為.

1)如圖1,延長C的邊到點,使,連結(jié).的面積為,則__________(用含的代數(shù)式表示);

2)如圖2,延長的邊到點,延長邊到點,使,,連結(jié),若的面積為,則__________(用含的代數(shù)式表示);

3)在圖2的基礎(chǔ)上延長AB到點F,使BF=AB,連接FD,得到△DEF(如圖3),若陰影部分的面積為S3,S3=___(用含a的代數(shù)式表示)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,給正五邊形的頂點依次編號為1,23,4,5.若從某一頂點開始,沿正五邊形的邊順時針方向行走,頂點編號的數(shù)字是幾,就走幾個邊長,則稱這種走法為一次移位.如:小宇在編號為3的頂點上時,那么他應(yīng)走3個邊長,即從3→4→5→1為第一次移位,這時他到達(dá)編號為1的頂點;然后從1→2為第二次移位.若小宇從編號為2的頂點開始,第15移位后,則他所處頂點的編號為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,點EBC的中點,點FAD上,AF6cm,BF12cm,BD平分∠FBC,若點P,Q分別是AF,BC上點,且CQ=2AP.若點P、Q、E、F為頂點的四邊形構(gòu)成平行四邊形,則AP的長為______

查看答案和解析>>

同步練習(xí)冊答案