【題目】如圖,點A(m,m+1),B(m+1,2m-3)都在反比例函數的圖象上.
(1)求m,k的值;
(2)如果M為x軸上一點,N為y軸上一點, 以點A,B,M,N為頂點的四邊形是平行四邊形,試求直線MN的函數表達式.
【答案】(1)m=3,k=12;(2)或
【解析】
試題分析:(1)根據反比例函數圖象上的點的坐標的特征可得,即可求得結果;
(2)存在兩種情況,①當M點在x軸的正半軸上,N點在y軸的正半軸上時,②當M點在x軸的負半軸上,N點在y軸的負半軸上時,根據平行四邊形的性質求解即可.
(1)由題意可知,
解得m1=3,m2=-1(舍去)
∴A(3,4),B(4,3);
∴k=4×3=12;
(2)存在兩種情況,如圖:
①當M點在x軸的正半軸上,N點在y軸的正半軸上時,設M1點坐標為(x1,0),N1點坐標為(0,y1).
∵四邊形AN1M1B為平行四邊形,
∴線段N1M1可看作由線段AB向左平移3個單位,再向下平移3個單位得到的
由(1)知A點坐標為(3,4),B點坐標為(4,3),
∴N1點坐標為(0,1),M1點坐標為(1,0)
設直線M1N1的函數表達式為,把x=1,y=0代入,解得.
∴直線M1N1的函數表達式為;
②當M點在x軸的負半軸上,N點在y軸的負半軸上時,設M2點坐標為(x2,0),N2點坐標為(0,y2).
∵AB∥N1M1,AB∥M2N2,AB=N1M1,AB=M2N2,
∴N1M1∥M2N2,N1M1=M2N2.
∴線段M2N2與線段N1M1關于原點O成中心對稱.
∴M2點坐標為(-1,0),N2點坐標為(0,-1).
設直線M2N2的函數表達式為,把x=-1,y=0代入,解得,
∴直線M2N2的函數表達式為
所以,直線MN的函數表達式為或.
科目:初中數學 來源: 題型:
【題目】下列說法正確的是( )
A.“穿十條馬路連遇十次紅燈”是不可能事件
B.任意畫一個三角形,其內角和是180°是必然事件
C.某彩票中獎概率為1%,那么買100張彩票一定會中獎
D.“福山福地福人居”這句話中任選一個漢字,這個字是“!弊值母怕适
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】受氣候的影響,某超市蔬菜供應緊張,需每天從外地調運蔬菜1000斤.超市決定從甲、乙兩大型蔬菜棚調運蔬菜,已知甲蔬菜棚每天最多可調出800斤,乙蔬菜棚每天最多可調運600斤,從兩蔬菜棚調運蔬菜到超市的路程和運費如下表:
到超市的路程(千米) | 運費(元/斤·千米) | |
甲蔬菜棚 | 120 | 0.03 |
乙蔬菜棚 | 80 | 0.05 |
(1)若某天調運蔬菜的總運費為3840元,則從甲、乙兩蔬菜棚各調運了多少斤蔬菜?
(2)設從甲蔬菜棚調運蔬菜斤,總運費為元,試寫出與的函數關系式,怎樣安排調運方案才能使每天的總運費最?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,一次函數(為常數)的圖象與反比例函數(為常數,且<0)的圖象交于A,B兩點.
(1) 如圖①,當,時,
① A ( , ),B ( , );
②直接寫出使成立的的取值范圍;
(2) 如圖②,將(1)中直線AB向下平移,交反比例函數圖像于點C,D,連接OC,AC,若△AOC的面積為8,求的值;
(3) 若A,B兩點的橫坐標分別為,,且,滿足,證明:2m-b=-3.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠1+∠2=180°,∠3=∠B,試判斷∠AED與∠C的大小關系,并證明你的結論.
∠C與∠AED相等,理由如下:
∵∠1+∠2=180°(已知),∠1+∠DFE=180°(鄰補角定義)
∴∠2=___(___),
∴AB∥EF(___)
∵∠3=___(___)
又∠B=∠3(已知)
∴∠B=___(等量代換)
∴DE∥BC(___)
∴∠C=∠AED(___).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度數.
小明的思路是:過P作PE∥AB,通過平行線性質來求∠APC.
(1)按小明的思路,易求得∠APC的度數為_____度;
(2)問題遷移:如圖2,AB∥CD,點P在射線OM上運動,記∠PAB=α,∠PCD=β,當點P在B、D兩點之間運動時,問∠APC與α、β之間有何數量關系?請說明理由;
(3)在(2)的條件下,如果點P在B、D兩點外側運動時(點P與點O、B、D三點不重合),請直接寫出∠APC與α、β之間的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一次函數的圖象過點A(0,3)和點B(3,0),且與正比例函數的圖象交于點P.
(1)求函數的解析式和點P的坐標.
(2)畫出兩個函數 的圖象,并直接寫出當時的取值范圍.
(3)若點Q是軸上一點,且△PQB的面積為8,求點Q的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知∠1+∠2=180°,∠A=∠C,AD平分∠BDF.
(1)AE與FC的位置關系如何?為什么?
(2)AD與BC的位置關系如何?為什么?
(3)BC平分∠DBE嗎?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點A、B在數軸上分別表示實數a、b,A、B兩點之間的距離表示為AB=|a﹣b|,回答下列問題:
(1)數軸上表示1和﹣3的兩點之間的距離是 ;
(2)數軸上表示x和﹣1的兩點分別是點A和B,如果AB=2,那么x= ;
(3)當|x﹣6|+|x﹣1|的最小值是 。若|x﹣3|+|x﹣b|的最小值為4,則b的值為 。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com