【題目】26.如圖,在四邊形ABCD中,∠DAB=∠ABC=90°,CD與以AB為直徑的半圓相切于點(diǎn)E,EF⊥AB于點(diǎn)F,EF交BD于點(diǎn)G,設(shè)AD=a,BC=b.
(1)求CD的長度(用a,b表示);
(2)求EG的長度(用a,b表示);
(3)試判斷EG與FG是否相等,并說明理由.

【答案】
(1)解:∵AB為半圓的直徑,∠DAB=∠ABC=90°,

∴DA、BC為半圓O的切線,

又∵CD與以AB為直徑的半圓相切于點(diǎn)E,

∴DE=DA=a,CE=CB=b,

∴CD=a+b


(2)解:∵EF⊥AB,

∴EG∥BC,

∴EG:BC=DE:DC,即EG:b=a:(a+b),

∴EG=


(3)解:EG與FG相等.理由如下:

∵EG∥BC,

= ,即 = ①,

又∵GF∥AD,

= ,即 = ②,

①+②得 + = + =1,

而EG=

+ =1,

∴FG= ,

∴EG=FG.


【解析】(1)由AB為半圓的直徑,∠DAB=∠ABC=90°,根據(jù)切線的判定方法得到DA、BC為半圓O的切線,而CD與以AB為直徑的半圓相切于點(diǎn)E,根據(jù)切線長定理得到DE=DA=a,CE=CB=b,即有CD=a+b;(2)易得EG∥BC,根據(jù)平行線分線段成比例定理有EG:BC=DE:DC,即EG:b=a:(a+b),即可表示出EG= ;(3)由EG∥BC,根據(jù)平行線分線段成比例定理 = ,即 = ,由GF∥AD得到 = ,即 = ,則 + = + =1,然后把EG= 代入計(jì)算即可得到FG= ,即可得到EG=FG.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把函數(shù)y=x的圖象上各點(diǎn)的縱坐標(biāo)變?yōu)樵瓉淼?倍,橫坐標(biāo)不變,得到函數(shù)y=2x的圖象;也可以把函數(shù)y=x的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼? 倍,縱坐標(biāo)不變,得到函數(shù)y=2x的圖象.
類似地,我們可以認(rèn)識(shí)其他函數(shù).

(1) 把函數(shù)y= 的圖象上各點(diǎn)的縱坐標(biāo)變?yōu)樵瓉淼?/span>倍,橫坐標(biāo)不變,得到函數(shù)y= 的圖象;也可以把函數(shù)y= 的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變,得到函數(shù)y= 的圖象.
(2)已知下列變化:①向下平移2個(gè)單位長度;②向右平移1個(gè)單位長度;③向右平移 個(gè)單位長度;④縱坐標(biāo)變?yōu)樵瓉淼?倍,橫坐標(biāo)不變;⑤橫坐標(biāo)變?yōu)樵瓉淼? 倍,縱坐標(biāo)不變;⑥橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變.
(Ⅰ)函數(shù)y=x2的圖象上所有的點(diǎn)經(jīng)過④→②→①,得到函數(shù)的圖象;
(Ⅱ)為了得到函數(shù)y=﹣ (x﹣1)2﹣2的圖象,可以把函數(shù)y=﹣x2的圖象上所有的點(diǎn)
A.①→⑤→③B.①→⑥→③C.①→②→⑥D(zhuǎn).①→③→⑥
(3)函數(shù)y= 的圖象可以經(jīng)過怎樣的變化得到函數(shù)y=﹣ 的圖象?(寫出一種即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的有( )
①面積之比為1:2的兩個(gè)相似三角形的周長之比是1:4;②三視圖相同的幾何體是正方形;③-27沒有立方根;④對(duì)角線互相垂直的四邊形是菱形;⑤某中學(xué)人數(shù)相等的甲、乙兩班學(xué)生參加了同一次數(shù)學(xué)測驗(yàn),班平均分和方差分別為 =82分, =82分, =245, =190,那么成績較為整齊的是乙班,
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了進(jìn)一步開展“陽光體育”活動(dòng),計(jì)劃用2000元購買乒乓球拍,用2800元購買羽毛球拍.已知一副羽毛球拍比一副乒乓球拍貴14元.該校購買的乒乓球拍與羽毛球拍的數(shù)量能相同嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)E,F(xiàn),G,H分別是四邊形ABCD的邊AB,BC,CD,DA的中點(diǎn),若AC⊥BD,且AC≠BD,則四邊形EFGH的形狀是(填“梯形”“矩形”或“菱形”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,△ABC中,∠ACB=90°,AB=8cm,D是AB的中點(diǎn).現(xiàn)將△BCD沿BA方向平移1cm,得到△EFG,F(xiàn)G交AC于H,則GH的長等于cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某開發(fā)商進(jìn)行商鋪促銷,廣告上寫著如下條款: 投資者購買商鋪后,必須由開發(fā)商代為租賃5年,5年期滿后由開發(fā)商以比原商鋪標(biāo)價(jià)高20%的價(jià)格進(jìn)行回購,投資者可在以下兩種購鋪方案中做出選擇:
方案一:投資者按商鋪標(biāo)價(jià)一次性付清鋪款,每年可以獲得的租金為商鋪標(biāo)價(jià)的10%.
方案二:投資者按商鋪標(biāo)價(jià)的八五折一次性付清鋪款,2年后每年可以獲得的租金為商鋪標(biāo)價(jià)的10%,但要繳納租金的10%作為管理費(fèi)用.
(1)請(qǐng)問:投資者選擇哪種購鋪方案,5年后所獲得的投資收益率更高?為什么?(注:投資收益率= ×100%)
(2)對(duì)同一標(biāo)價(jià)的商鋪,甲選擇了購鋪方案一,乙選擇了購鋪方案二,那么5年后兩人獲得的收益將相差5萬元.問:甲、乙兩人各投資了多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線相交于點(diǎn)O,∠CAB的平分線分別交BD,BC于點(diǎn)E,F(xiàn),作BH⊥AF于點(diǎn)H,分別交AC,CD于點(diǎn)G,P,連接GE,GF.

(1)求證:△OAE≌△OBG;
(2)試問:四邊形BFGE是否為菱形?若是,請(qǐng)證明;若不是,請(qǐng)說明理由;
(3)試求: 的值(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下框中是小明對(duì)一道題目的解答以及老師的批改.

題目:某村計(jì)劃建造如圖所示的矩形蔬菜溫室,要求長與寬的比為2:1,在溫室內(nèi),沿前側(cè)內(nèi)墻保留3m的空地,其他三側(cè)內(nèi)墻各保留1m的通道,當(dāng)溫室的長與寬各為多少時(shí),矩形蔬菜種植區(qū)域的面積是288m2?
解:,
根據(jù)題意,得x2x=288.
解這個(gè)方程,得x1=﹣12(不合題意,舍去),x2=12
所以溫室的長為2×12+3+1=28(m),寬為12+1+1=14(m)
答:當(dāng)溫室的長為28m,寬為14m時(shí),矩形蔬菜種植區(qū)域的面積是288m2

我的結(jié)果也正確!
(1)小明發(fā)現(xiàn)他解答的結(jié)果是正確的,但是老師卻在他的解答中畫了一條橫線,并打了一個(gè)?.結(jié)果為何正確呢?
(2)請(qǐng)指出小明解答中存在的問題,并補(bǔ)充缺少的過程: 變化一下會(huì)怎樣…
(3)如圖,矩形A′B′C′D′在矩形ABCD的內(nèi)部,AB∥A′B′,AD∥A′D′,且AD:AB=2:1,設(shè)AB與A′B′、BC與B′C′、CD與C′D′、DA與D′A′之間的距離分別為a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d應(yīng)滿足什么條件?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案