如圖,△ABC中,O為外心,三條高AD,BE,CF交于點(diǎn)H,直線ED和AB交于點(diǎn)M,F(xiàn)D和AC交于點(diǎn)N.求證:OB⊥DF.

證明:∵A,C,D,F(xiàn)四點(diǎn)共圓,
∴∠BDF=∠BAC,
又∵∠OBC=(180°-∠BOC)=90°-∠BAC,
∴OB⊥DF(直角三角形的性質(zhì)).
分析:利用四點(diǎn)共圓的知識(shí)是解決此題的捷徑.
點(diǎn)評(píng):主要考查了圓周角定理和三角形的外角和內(nèi)角關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案