【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)H,點(diǎn)F是上一點(diǎn),連接AF交CD的延長線于點(diǎn)E.
(1)求證:△AFC∽△ACE;
(2)若AC=5,DC=6,當(dāng)點(diǎn)F為的中點(diǎn)時(shí),求AF的值.
【答案】(1)見解析;(2)
【解析】
(1)根據(jù)條件得出=,推出∠AFC=∠ACD,結(jié)合公共角得出三角形相似;
(2)根據(jù)已知條件證明△ACF≌△DEF,得出AC=DE,利用勾股定理計(jì)算出AE的長度,再根據(jù)(1)中△AFC∽△ACE,得出=,從而計(jì)算出AF的長度.
(1)∵CD⊥AB,AB是⊙O的直徑
∴=
∴∠AFC=∠ACD.
∵在△ACF和△AEC中,∠AFC=∠ACD,∠CAF=∠EAC
∴△AFC ∽△ACE
(2)∵四邊形ACDF內(nèi)接于⊙O
∴∠AFD+∠ACD=180°
∵∠AFD+∠DFE=180°
∴∠DFE=∠ACD
∵∠AFC=∠ACD
∴∠AFC=∠DFE.
∵△AFC∽△ACE
∴∠ACF=∠DEF.
∵F為的中點(diǎn)
∴AF=DF.
∵在△ACF和△DEF中,∠ACF=∠DEF,∠AFC=∠DFE,AF=DF
∴△ACF≌△DEF.
∴AC=DE=5.
∵CD⊥AB,AB是⊙O的直徑
∴CH=DH=3.
∴EH=8
在Rt△AHC中,AH2=AC2-CH2=16,
在Rt△AHE中,AE2=AH2+EH2=80,∴AE=4.
∵△AFC∽△ACE
∴=,即=,
∴AF=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△ABC中,AB=AC,∠ACB=72°,
(1)若BD⊥AC于D,求∠ABD的度數(shù);
(2)若CE平分∠ACB,求證:AE=BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,AC=6cm.點(diǎn)P、Q是BC邊上兩個(gè)動(dòng)點(diǎn)(點(diǎn)Q在點(diǎn)P右邊),PQ=2cm,點(diǎn)P從點(diǎn)C出發(fā),沿CB向右運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.5s后點(diǎn)Q到達(dá)點(diǎn)B,點(diǎn)P、Q停止運(yùn)動(dòng),過點(diǎn)Q作QD⊥BC交AB于點(diǎn)D,連接AP,設(shè)△ACP與△BQD的面積和為S(cm),S與t的函數(shù)圖像如圖2所示.
(1)圖1中BC= cm,點(diǎn)P運(yùn)動(dòng)的速度為 cm/s;
(2)t為何值時(shí),面積和S最小,并求出最小值;
(3)連接PD,以點(diǎn)P為圓心線段PD的長為半徑作⊙P,當(dāng)⊙P與的邊相切時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,點(diǎn)M、N分別在AB、AD邊上,若AM:MB=AN:ND=1:2.則∠BCD= °,cos∠MCN= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AC=4,BC=3,點(diǎn)D是AB邊上一點(diǎn)(不與A、B重合),若過點(diǎn)D的直線截得的三角形與△ABC相似,并且平分△ABC的周長,則AD的長為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究:三角形的角平分線是初中幾何中一條非常重要的線段,它除了具有平分角、角平分線上的點(diǎn)到角兩邊的距離相等這些性質(zhì)外,還具有以下的性質(zhì):
如圖①,在△ABC中,AD平分∠BAC交BC于點(diǎn)D,則=.提示:過點(diǎn)C作CE∥AD交BA的延長線于點(diǎn)E.
請根據(jù)上面的提示,寫出得到“”這一結(jié)論完整的證明過程.
結(jié)論應(yīng)用:如圖②,在Rt△ABC中,∠C=90°,AC=8,BC=15,AD平分∠BAC交BC于點(diǎn)D.請直接利用“問題探究”的結(jié)論,求線段CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸相交于,兩點(diǎn),頂點(diǎn)在第一象限,點(diǎn)在該拋物線上.
(1)若點(diǎn)坐標(biāo)為.
①求與的函數(shù)關(guān)系式;
②已知兩點(diǎn),,當(dāng)拋物線與線段沒有交點(diǎn)時(shí),求的取值范圍;
(2)若點(diǎn)在該拋物線的曲線段上(不與點(diǎn),重合),直線交軸于點(diǎn),過點(diǎn)作軸于點(diǎn),連接,.求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在矩形ABCD中,AB=8,BC=x(0<x≤8),點(diǎn)E在邊CD上,且CE=CB,以AE為對角線作正方形AGEF.設(shè)正方形AGEF的面積y.
(1)當(dāng)點(diǎn)F在矩形ABCD的邊上時(shí),x= .
(2)求y與x的函數(shù)關(guān)系式及y的取值范圍.
(3)當(dāng)矩形ABCD的一條邊將正方形AGEF的面積分為1:3兩部分時(shí),直接寫出x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,將點(diǎn)定義為點(diǎn)的“關(guān)聯(lián)點(diǎn)”. 已知點(diǎn)在函數(shù)的圖像上,將點(diǎn)A的“關(guān)聯(lián)點(diǎn)”記為點(diǎn).
(1)請?jiān)谌鐖D基礎(chǔ)上畫出函數(shù)的圖像,簡要說明畫圖方法;
(2)如果點(diǎn)在函數(shù)的圖像上,求點(diǎn)的坐標(biāo);
(3)將點(diǎn)稱為點(diǎn)的“待定關(guān)聯(lián)點(diǎn)”(其中),如果點(diǎn)的“待定關(guān)聯(lián)點(diǎn)”在函數(shù)的圖像上,試用含的代數(shù)式表示點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com