【題目】在平面直角坐標系中,點A04),Bm0)在坐標軸上,點C,O關(guān)于直線AB對稱,點D在線段AB上.

1)如圖1,若m8,求AB的長;

2)如圖2,若m4,連接OD,在y軸上取一點E,使ODDE,求證:CEDE;

3)如圖3,若m4,在射線AO上裁取AF,使AFBD,當CD+CF的值最小時,請在圖中畫出點D的位置,并直接寫出這個最小值.

【答案】1AB4;(2)見解析;(3CD+CF的最小值為4.

【解析】

1)根據(jù)勾股定理可求AB的長;

2)過點DDFAO,根據(jù)等腰三角形的性質(zhì)可得OFEF,根據(jù)軸對稱的性質(zhì)等腰直角三角形的性質(zhì)可得AFDF,設(shè)OFEFx,AE42x,根據(jù)勾股定理用參數(shù)x表示

DE,CE的長,即可證CEDE

3)過點BBMOB,在BM上截取BMAO,過點CCNBM,交MB的延長線于點N,根據(jù)銳角三角函數(shù)可得∠ABO30°,根據(jù)軸對稱的性質(zhì)可得ACAO4BOBC4,∠ABO=∠ABC30°,∠OAB=∠CAB60°,根據(jù)“SAS”可證△ACF≌△BMD,可得CFDM,則當點DCM上時,CF+CD的值最小,根據(jù)直角三角形的性質(zhì)可求CN,BN的長,根據(jù)勾股定理可求CM的長,即可得CF+CD的最小值.

1)∵點A0,4),Bm,0),且m8,

AO4,BO8,

RtABO中,AB

2)如圖,過點DDFAO,

DEDO,DFAO,

EFFO,

m4

AOBO4,

∴∠ABO=∠OAB45°,

∵點C,O關(guān)于直線AB對稱,

∴∠CAB=∠CBA45°,AOACOBBC4

∴∠CAO=∠CBO90°,

DFAO,∠BAO45°,

∴∠DAF=∠ADF45°,

AFDF,

設(shè)OFEFx,AE42x,

AFDF4x

RtDEF中,DE

RtACE中,CE

CEDE

3)如圖,過點BBMOB,在BM上截取BMAO,過點CCNBM,交MB的延長線于點N,

m4,

OB4

tanABO,

∴∠ABO30°

∵點C,O關(guān)于直線AB對稱,

ACAO4BOBC4,∠ABO=∠ABC30°,∠OAB=∠CAB60°,

∴∠CAF120°,∠CBO60°

BMOB,∠ABO30°,

∴∠ABM120°,

∴∠CAF=∠ABM,且DBAF,BMAOAC4,

∴△ACF≌△BMDSAS

CFDM

CF+CDCD+DM,

∴當點DCM上時,CF+CD的值最小,

CF+CD的最小值為CM的長,

∵∠CBO60°,BMOB,

∴∠CBN30°,且BMOB,BC4

CN2BNCN6,

MNBM+BN4+610,

RtCMN中,CM,

CD+CF的最小值為.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,小明在自家樓頂上的點A處測量建在與小明家樓房同一水平線上鄰居的電梯的高度,測得電梯樓頂部B處的仰角為45°,底部C處的俯角為26°,已知小明家樓房的高度AD=15米,求電梯樓的高度BC(結(jié)果精確到0.1米)(參考數(shù)據(jù):sin26°≈0.44,cos26°≈0.90,tan26°≈0.49)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個安裝有進出水管的30升容器,水管單位時間內(nèi)進出的水量是一定的,設(shè)從某時刻開始的4分鐘內(nèi)只進水不出水,在隨后的8分鐘內(nèi)既進水又出水,得到水量y(升)與時間x(分)之間的函數(shù)關(guān)系如圖所示.根據(jù)圖象信思給出下列說法,其中錯誤的是( 。

A. 每分鐘進水5

B. 每分鐘放水1.25

C. 12分鐘后只放水,不進水,還要8分鐘可以把水放完

D. 若從一開始進出水管同時打開需要24分鐘可以將容器灌滿

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點DAB上,點EBC上,BDBE

1)請你再添加一個條件,使得△BEA≌△BDC,并給出證明.你添加的條件是   

2)根據(jù)你添加的條件,再寫出圖中的一對全等三角形   .(只要求寫出一對全等三角形,不再添加其他線段,不再標注或使用其他字母,不必寫出證明過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線C1:y=x2+bx+c經(jīng)過原點,與x軸的另一個交點為(2,0),將拋物線C1向右平移m(m>0)個單位得到拋物線C2 , C2交x軸于A,B兩點(點A在點B的左邊),交y軸于點C.
(1)求拋物線C1的解析式及頂點坐標;
(2)以AC為斜邊向上作等腰直角三角形ACD,當點D落在拋物線C2的對稱軸上時,求拋物線C2的解析式;
(3)若拋物線C2的對稱軸存在點P,使△ PAC為等邊三角形,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADBC,∠EAD=∠C

1)試判斷AECD的位置關(guān)系,并說明理由;

2)若∠FEC=∠BAE,∠EFC50°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,AD=1,AB在數(shù)軸上,若以點A為圓心,對角線AC的長為半徑作弧交數(shù)軸的正半軸于M,則點M的表示的數(shù)為________________

【答案】

【解析】ACAM,∴AM

型】填空
結(jié)束】
11

【題目】ABC中,AB10AC2,BC邊上的高AD6,則另一邊BC等于_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:我們學(xué)過一次函數(shù)的圖象的平移,如:將一次函數(shù)的圖象沿x軸向右平移1個單位長度可得到函數(shù)的圖象,再沿y軸向上平移1個單位長度,得到函數(shù)的圖象;如果將一次函數(shù)的圖象沿x軸向左平移1個單位長度可得到函數(shù)的圖象,再沿y軸向下平移1個單位長度,得到函數(shù)的圖象;仿照上述平移的規(guī)律,解決下列問題:

將一次函數(shù)的圖象沿x軸向右平移3個單位長度,再沿y軸向上平移1個單位長度,得到函數(shù)的圖象;

的函數(shù)圖象沿y軸向下平移3個單位長度,得到函數(shù)的圖象,再沿x軸向左平移1個單位長度,得到函數(shù)的圖象;

函數(shù)的圖象可由的圖象經(jīng)過怎樣的平移變換得到?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將矩形OABC置于平面直角坐標系中,點A,C分別在x,y軸的正半軸上,已知點B(4,2),將矩形OABC翻折,使得點C的對應(yīng)點P恰好落在線段OA(包括端點O,A)上,折痕所在直線分別交BC、OA于點D、E;若點P在線段OA上運動時,過點P作OA的垂線交折痕所在直線于點 Q.設(shè)點Q的坐標為(x,y),則y關(guān)于x的函數(shù)關(guān)系式是 .

查看答案和解析>>

同步練習冊答案