方程9x+24y-5z=1000的整數(shù)解為______.
設9x+24y=3t,即3x+8y=t,于是3t-5z=1000.
于是原方程可化為
3x+8y=t    ①
3t-5z=1000    ②

用前面的方法可以求得①的解為:
x=3t-8u
y=-t+3u
,u是整數(shù);
②的解為
t=2000+5v
z=1000+3v
,v是整數(shù).
消去t,得
x=6000-8u+15v
y=-2000+3u-5v
z=1000+3v
,u,v是整數(shù).
即當u、v取不同整數(shù)的時候,會得到相應的x、y、z的整數(shù)值,
故答案為
x=6000-8u+15v
y=-2000+3u-5v(u,v為整數(shù))
z=1000+3v
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

方程9x+24y-5z=1000的整數(shù)解為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

求方程9x+24y-5z=1000的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

求方程9x+24y-5z=1000的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學 來源:初三奧賽訓練題07:不定方程(解析版) 題型:填空題

方程9x+24y-5z=1000的整數(shù)解為   

查看答案和解析>>

同步練習冊答案