(2010•貴港)如圖所示,A(-,0)、B(0,1)分別為x軸、y軸上的點,△ABC為等邊三角形,點P(3,a)在第一象限內,且滿足2S△ABP=S△ABC,則a的值為( )

A.
B.
C.
D.2
【答案】分析:過P點作PD⊥x軸,垂足為D,根據(jù)A(-,0)、B(0,1)求OA、OB,利用勾股定理求AB,可得△ABC的面積,利用
S△ABP=S△AOB+S梯形BODP-S△ADP,列方程求a.
解答:解:過P點作PD⊥x軸,垂足為D,
由A(-,0)、B(0,1),得OA=,OB=1,
∵△ABC為等邊三角形,
由勾股定理,得AB==2,
∴S△ABC=×2×=
又∵S△ABP=S△AOB+S梯形BODP-S△ADP
=××1+×(1+a)×3-×(+3)×a,
=
由2S△ABP=S△ABC,得=,
∴a=
故選C.
點評:本題考查了點的坐標與線段長的關系,不規(guī)則三角形面積的表示方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•貴港)如圖所示,已知直線y=kx-1與拋物線y=ax2+bx+c交于A(-3,2)、B(0,-1)兩點,拋物線的頂點為C(-1,-2),對稱軸交直線AB于點D,連接OC.
(1)求k的值及拋物線的解析式;
(2)若P為拋物線上的點,且以P、A、D三點構成的三角形是以線段AD為一條直角邊的直角三角形,請求出滿足條件的點P的坐標;
(3)在(2)的條件下所得的三角形是否與△OCD相似?請直接寫出判斷結果,不必寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣西貴港市中考數(shù)學試卷(解析版) 題型:解答題

(2010•貴港)如圖所示,已知直線y=kx-1與拋物線y=ax2+bx+c交于A(-3,2)、B(0,-1)兩點,拋物線的頂點為C(-1,-2),對稱軸交直線AB于點D,連接OC.
(1)求k的值及拋物線的解析式;
(2)若P為拋物線上的點,且以P、A、D三點構成的三角形是以線段AD為一條直角邊的直角三角形,請求出滿足條件的點P的坐標;
(3)在(2)的條件下所得的三角形是否與△OCD相似?請直接寫出判斷結果,不必寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(01)(解析版) 題型:選擇題

(2010•貴港)如圖所示,在4×8的矩形網(wǎng)格中,每個小正方形的邊長都為1,△ABC的三個頂點都在格點上,則tan∠BAC的值為( )

A.
B.1
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《圖形的平移》(02)(解析版) 題型:解答題

(2010•貴港)如圖所示,把△ABC置于平面直角坐標系中,請你按下列要求分別畫圖:
(1)畫出△ABC向下平移5個單位長度得到的△A1B1C1
(2)畫出△ABC繞著原點O逆時針旋轉90°得到的△A2B2C2;
(3)畫出△ABC關于原點O對稱的△A3B3C3

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《圖形的對稱》(01)(解析版) 題型:選擇題

(2010•貴港)如圖所示,在對角線長分別為12和16的菱形ABCD中,E、F分別是邊AB、AD的中點,H是對角線BD上的任意一點,則HE+HF的最小值是( )
A.14
B.28
C.6
D.10

查看答案和解析>>

同步練習冊答案