【題目】已知直線平行,直線分別截、于點(diǎn)、兩點(diǎn).
(1)如圖①,有一動(dòng)點(diǎn)在線段之間運(yùn)動(dòng)(不與E,F兩點(diǎn)重合),試探究、、的等量等關(guān)系?試說(shuō)明理由.
(2)如圖②、③,當(dāng)動(dòng)點(diǎn)在線段之外運(yùn)動(dòng)(不與E,F兩點(diǎn)重合),問(wèn)上述結(jié)論是否還成立?若不成立,試寫出新的結(jié)論并說(shuō)明理由.
【答案】(1)∠2=∠1+∠3,理由見解析;(2)∠2=∠1+∠3不成立,新的結(jié)論為∠2=,理由見解析.
【解析】
(1)如圖④,過(guò)點(diǎn) P作PQ∥AB,則∠1=∠APQ,根據(jù)平行線的性質(zhì),即可得到結(jié)論;
(2)分兩種情況:(i)當(dāng)點(diǎn)P在FE的延長(zhǎng)線上時(shí),如圖⑤,過(guò)點(diǎn) P作PQ∥AB,(ii)當(dāng)點(diǎn)P在EF的延長(zhǎng)線上時(shí),如圖⑥,過(guò)點(diǎn) P作PQ∥AB,分別求出∠2、∠1、∠3的數(shù)量關(guān)系,即可得到結(jié)論.
(1)∠2=∠1+∠3,理由如下:
如圖④,過(guò)點(diǎn) P作PQ∥AB,則∠1=∠APQ.
∵AB∥CD,PQ∥AB,
∴PQ∥CD,
∴∠3=∠CPQ.
∵∠2=∠APQ+∠CPQ=∠1+∠3;
(2)∠2=∠1+∠3 不成立,新的結(jié)論為∠2=.理由如下:
(i)當(dāng)點(diǎn)P在FE的延長(zhǎng)線上時(shí),
如圖⑤,過(guò)點(diǎn) P作PQ∥AB,則∠1=∠APQ.
∵AB∥CD,PQ∥AB,
∴PQ∥CD,
∴∠3=∠CPQ.
∴∠2=∠CPQ∠APQ=∠3∠1;
(ii)當(dāng)點(diǎn)P在EF的延長(zhǎng)線上時(shí),
如圖⑥,過(guò)點(diǎn) P作PQ∥AB,則∠1=∠APQ.
∵AB∥CD,PQ∥AB,
∴PQ∥CD,
∴∠3=∠CPQ,
∴∠2=∠APQ∠CPQ=∠1∠3.
綜上所述:∠2=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,點(diǎn)B、F、C、E在同一直線上,AC、DF相交于G,AB⊥BE,垂足為B,DE⊥BE,垂足為E,且AB=DE,BF=CE.
求證:(1)△ABC≌△DEF;
(2)如果∠ACB=25°,求∠AGF的度數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某家電超市經(jīng)營(yíng)甲、乙兩種品牌的洗衣機(jī).經(jīng)投標(biāo)發(fā)現(xiàn),1臺(tái)甲品牌冼衣機(jī)進(jìn)價(jià)比1臺(tái)乙品牌洗衣機(jī)進(jìn)價(jià)貴500元;購(gòu)進(jìn)2臺(tái)甲品牌洗衣機(jī)和3臺(tái)乙品牌洗衣機(jī)共需進(jìn)貨款13500元.
(1)購(gòu)進(jìn)1臺(tái)甲品牌洗衣機(jī)和1臺(tái)乙品牌洗衣機(jī)進(jìn)價(jià)各需要多少元?
(2)超市根據(jù)經(jīng)營(yíng)實(shí)際情況,需購(gòu)進(jìn)甲、乙兩種品牌的洗衣機(jī)總數(shù)為50臺(tái),購(gòu)進(jìn)甲、乙兩種品牌的洗衣機(jī)的總費(fèi)用不超過(guò)145250元.
①請(qǐng)問(wèn)甲品牌洗衣機(jī)最多購(gòu)進(jìn)多少臺(tái)?
②超市從經(jīng)營(yíng)實(shí)際需要出發(fā),其中甲品牌洗衣機(jī)購(gòu)進(jìn)的臺(tái)數(shù)不少于乙晶牌冼衣機(jī)臺(tái)數(shù)的3倍,則該超市共有幾種購(gòu)進(jìn)方案?試寫出所有的購(gòu)進(jìn)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一家商店進(jìn)行裝修,若請(qǐng)甲、乙兩個(gè)裝修組同時(shí)施工,8天可以完成,需付兩組費(fèi)用共3520元,若先請(qǐng)甲組單獨(dú)做6天,再請(qǐng)乙組單獨(dú)做12天可以完成,需付費(fèi)用3480元,問(wèn):
(1)甲,乙兩組工作一天,商店各應(yīng)付多少錢?
(2)已知甲單獨(dú)完成需12天,乙單獨(dú)完成需24天,單獨(dú)請(qǐng)哪個(gè)組,商店所需費(fèi)用最少?
(3)若裝修完后,商店每天可贏利200元,你認(rèn)為如何安排施工更有利于商店?請(qǐng)你幫助商店決策.(可用(1)(2)問(wèn)的條件及結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】校園空地上有一面墻,長(zhǎng)度為20m,用長(zhǎng)為32m的籬笆和這面墻圍成一個(gè)矩形花圃,如圖所示.
(1)能圍成面積是126m2的矩形花圃嗎?若能,請(qǐng)舉例說(shuō)明;若不能,請(qǐng)說(shuō)明理由.
(2)若籬笆再增加4m,圍成的矩形花圃面積能達(dá)到170m2嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過(guò)A點(diǎn)作BC的平行線,交CE的延長(zhǎng)線于點(diǎn)F,且AF=BD,連接BF.
(1)求證:BD=CD;(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把正方形鐵片OABC置于平面直角坐標(biāo)系中,頂點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)P(1,2)在正方形鐵片上,將正方形鐵片繞其右下角的頂點(diǎn)按順時(shí)針?lè)较蛞来涡D(zhuǎn)90°,第一次旋轉(zhuǎn)至圖①位置,第二次旋轉(zhuǎn)至圖②位置…,則正方形鐵片連續(xù)旋轉(zhuǎn)2017次后,點(diǎn)P的坐標(biāo)為____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某年級(jí)共有400名學(xué)生,為了解該年級(jí)學(xué)生上學(xué)的交通方式,從中隨機(jī)抽取100名學(xué)生進(jìn)行問(wèn)卷調(diào)查,并對(duì)調(diào)查數(shù)據(jù)進(jìn)行整理、描述和分析,下面給出了部分信息
A.不同交通方式學(xué)生人數(shù)分布統(tǒng)計(jì)圖如下:
B.采用公共交通方式單程所花費(fèi)時(shí)間(分鐘)的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:,,,,,);
根據(jù)以上信息,完成下列問(wèn)題:
(1)補(bǔ)全頻數(shù)分布直方圖;
(2)根據(jù)不同交通方式學(xué)生人數(shù)所占的百分比,算出“私家車方式”對(duì)應(yīng)扇形的圓心角是度_____.
(3)請(qǐng)你估計(jì)全年級(jí)乘坐公共交通上學(xué)有_____人,其中單程不少于60分鐘的有_____人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線段AB=9,射線BG⊥AB,P為射線BG上一點(diǎn),以AP為邊作正方形APCD,且C、D與點(diǎn)B在AP兩側(cè),在線段DP取一點(diǎn)E,使∠EAP=∠BAP,直線CE與線段AB相交于點(diǎn)F(點(diǎn)F與點(diǎn)A、B不重合).
(1)求證:△AEP≌△CEP;
(2)判斷CF與AB的位置關(guān)系,并說(shuō)明理由;
(3)求△AEF的周長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com