【題目】一次函數(shù)y=ax+b(a≠0)與二次函數(shù)y=ax2+2x+b(a≠0)在同一直角坐標(biāo)系中的圖象可能是( )
A.
B.
C.
D.
【答案】D
【解析】解:A、由拋物線可知,a>0,得b>0,由直線可知,a<0,b>0,故本選項(xiàng)錯(cuò)誤;
B、由拋物線可知,a<0,b>0,由直線可知,a>0,b<0,故本選項(xiàng)錯(cuò)誤;
C、由拋物線可知,a<0,b>0,由直線可知,a<0,b<0,故本選項(xiàng)錯(cuò)誤;
D、由拋物線可知,a>0,b>0,由直線可知,a>0,b>0,且交y軸同一點(diǎn),故本選項(xiàng)正確.
所以答案是:D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識,掌握增減性:當(dāng)a>0時(shí),對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,,點(diǎn)在邊上,且;將沿對折至,延長交邊于點(diǎn),連結(jié)、,下列結(jié)論中,正確的個(gè)數(shù)為( )
①;②;③;④
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)了正方形之后,給同桌小文出了道題,從下列四個(gè)條件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中選兩個(gè)作為補(bǔ)充條件,使ABCD為正方形(如圖),現(xiàn)有下列四種選法,你認(rèn)為其中錯(cuò)誤的是( )
A.①②B.②③C.①③D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 中, ,AB=BC,A,B的坐標(biāo)分別為 ,將 繞點(diǎn)P旋轉(zhuǎn) 后得到 ,其中點(diǎn)B的對應(yīng)點(diǎn) 的坐標(biāo)為 .
(1)求出點(diǎn)C的坐標(biāo);
(2)求點(diǎn)P的坐標(biāo),并求出點(diǎn)C的對應(yīng)點(diǎn) 的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠A∶∠ABC∶∠ACB=3∶4∶5,BD,CE分別是邊AC,AB上的高,BD,CE相交于H,求∠BHC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸為x=﹣1,且過點(diǎn)(﹣3,0).下列說法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),( ,y2)是拋物線上兩點(diǎn),則y1>y2 . 其中說法正確的是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,若點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長度的速度沿折線運(yùn)動(回到點(diǎn)停止運(yùn)動),設(shè)運(yùn)動時(shí)間為秒.
(1)當(dāng)點(diǎn)在上時(shí),且滿足時(shí),求出此時(shí)的值;
(2)當(dāng)點(diǎn)在上時(shí),求出為何值時(shí),為以為腰的等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場購進(jìn)一批日用品,若按每件5元的價(jià)格銷售,每月能賣出3萬件;若按每件6元的價(jià)格銷售,每月能賣出2萬件,假定每月銷售件數(shù) (件)與價(jià)格 (元/件)之間滿足一次函數(shù)關(guān)系.
(1)試求:y與x之間的函數(shù)關(guān)系式;
(2)這批日用品購進(jìn)時(shí)進(jìn)價(jià)為4元,則當(dāng)銷售價(jià)格定為多少時(shí),才能使每月的潤最大?每月的最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索:小明和小亮在研究一個(gè)數(shù)學(xué)問題:已知AB∥CD,AB和CD都不經(jīng)過點(diǎn)P,探索∠P與∠A,∠C的數(shù)量關(guān)系.
發(fā)現(xiàn):在圖1中,小明和小亮都發(fā)現(xiàn):∠APC=∠A+∠C;
小明是這樣證明的:過點(diǎn)P作PQ∥AB
∴∠APQ=∠A( )
∵PQ∥AB,AB∥CD.
∴PQ∥CD( )
∴∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
小亮是這樣證明的:過點(diǎn)作PQ∥AB∥CD.
∴∠APQ=∠A,∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
請?jiān)谏厦孀C明過程的過程的橫線上,填寫依據(jù);兩人的證明過程中,完全正確的是 .
應(yīng)用:
在圖2中,若∠A=120°,∠C=140°,則∠P的度數(shù)為 ;
在圖3中,若∠A=30°,∠C=70°,則∠P的度數(shù)為 ;
拓展:
在圖4中,探索∠P與∠A,∠C的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com