如圖,C是以AB為直徑的⊙O上一點(diǎn),已知AB=5,BC=3,則圓心O到弦BC的距離是( )

A.1.5
B.2
C.2.5
D.3
【答案】分析:作OM⊥BC,根據(jù)三角形的中位線定理弦心距等于AC的一半,再利用勾股定理求出AC的長度,本題即可求出.
解答:解:過圓心O作OM⊥BC于M,又根據(jù)AB直徑,則AC⊥BC
∴OM∥AC
即OM是△ABC的中位線
又AC===4
∴OM=AC=2.
故選B.
點(diǎn)評(píng):本題主要考查了垂徑定理的內(nèi)容,過圓心,且垂直于弦的直線,一定平分弦.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖是9×7的正方形點(diǎn)陣,其水平方向和豎直方向的兩格點(diǎn)間的長度都為1個(gè)單位,以這些點(diǎn)為頂點(diǎn)的三角形稱為格點(diǎn)三角形.請(qǐng)通過畫圖分析、探究回答下列問題:
(1)請(qǐng)?jiān)趫D中畫出以AB為邊且面積為2的一個(gè)網(wǎng)格三角形;
(2)任取該網(wǎng)格中能與A、B構(gòu)成三角形的一點(diǎn)M,求以A、B、M為頂點(diǎn)的三角形的面積為2的概率;
(3)任取該網(wǎng)格中能與A、B構(gòu)成三角形的一點(diǎn)M,求以A、B、M為頂點(diǎn)的三角形為直角三角形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖是9×7的正方形點(diǎn)陣,其水平方向和豎直方向相鄰的兩格點(diǎn)間的長度都是1個(gè)單位,以這些點(diǎn)為頂點(diǎn)的三角形稱為格點(diǎn)三角形.請(qǐng)通過畫圖分析、探究回答下列問題:
(1)請(qǐng)?jiān)趫D中畫出以AB為邊且面積為3的一個(gè)格點(diǎn)三角形(記為△ABC);
(2)將你所畫的三角形繞著點(diǎn)A沿逆時(shí)針方向旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的圖形(記為
△AB′C′).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年人教版初中數(shù)學(xué)九年級(jí)上25.2列舉法求概率練習(xí)卷(解析版) 題型:解答題

如圖是9×7的正方形點(diǎn)陣,其水平方向和豎起直方向的兩格點(diǎn)間的長度都為1個(gè)單位,以這些點(diǎn)為頂點(diǎn)的三角形稱為格點(diǎn)三角形.請(qǐng)通過畫圖分析、探究回答下列問題:

(1)請(qǐng)?jiān)趫D中畫出以AB為邊且面積為2的一個(gè)網(wǎng)格三角形;

(2)任取該網(wǎng)格中能與A、B構(gòu)成三角形的一點(diǎn)M,求以A、B、M為頂點(diǎn)的三角形的面積為2的概率;

(3)任取該網(wǎng)格中能與A、B構(gòu)成三角形的一點(diǎn)M,求以A、B、M為頂點(diǎn)的三角形為直角三角形的概率.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖是9×7的正方形點(diǎn)陣,其水平方向和豎起直方向的兩格點(diǎn)間的長度都為1個(gè)單位,以這些點(diǎn)為頂點(diǎn)的三角形稱為格點(diǎn)三角形.請(qǐng)通過畫圖分析、探究回答下列問題:
(1)請(qǐng)?jiān)趫D中畫出以AB為邊且面積為2的一個(gè)網(wǎng)格三角形;
(2)任取該網(wǎng)格中能與A、B構(gòu)成三角形的一點(diǎn)M,求以A、B、M為頂點(diǎn)的三角形的面積為2的概率;
(3)任取該網(wǎng)格中能與A、B構(gòu)成三角形的一點(diǎn)M,求以A、B、M為頂點(diǎn)的三角形為直角三角形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年內(nèi)蒙古呼和浩特市中考數(shù)學(xué)預(yù)測(cè)試卷(二)(解析版) 題型:解答題

如圖是9×7的矩形點(diǎn)陣,其水平方向和豎直方向相鄰的兩格點(diǎn)間的長度都是1個(gè)單位,以這些點(diǎn)為頂點(diǎn)的三角形稱為格點(diǎn)三角形.請(qǐng)通過畫圖分析、探究回答下列問題:
(1)請(qǐng)?jiān)趫D中畫出以AB為邊且面積為3的一個(gè)格點(diǎn)三角形(記為△ABC);
(2)將你所畫的三角形繞著點(diǎn)A沿逆時(shí)針方向旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的圖形(記為△AB′C′).

查看答案和解析>>

同步練習(xí)冊(cè)答案