已知:如圖,過平行四邊形ABCD的對角線交點O作互相垂直的兩條直線EG、FH與平行四邊形ABCD各邊分別相交于點E、F、G、H.求證:四邊形EFGH是菱形.

【答案】分析:根據(jù)對角線互相垂直的平行四邊形是菱形.由已知條件證明OE=OG,同理OF=OH,所以四邊形EFGH是平行四邊形,又因為EG⊥FH,所以四邊形EFGH是菱形.
解答:證明:在平行四邊形ABCD中,OD=OB,OA=OC,
AD∥CB,(1分)
∴∠OBG=∠ODE.(2分)
又∵∠BOG=∠DOE,
∴△OBG≌△ODE.(4分)
∴OE=OG.(5分)
同理OF=OH.(6分)
∴四邊形EFGH是平行四邊形.(7分)
又∵EG⊥FH,
∴平行四邊形EFGH是菱形.(8分)
點評:此題主要考查菱形的判定,綜合利用平行四邊形的判定.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

13、(Ⅰ)已知:如圖,平行四邊形ABCD的對角線AC、BD相交于點O,EF過點O與AB、CD分別相交于點E、F.
求證:BE=DF.
(Ⅱ)請寫出使如圖所示的四邊形ABCD為平行四邊形的條件(例如,填:AB∥CD且AD∥BC.在不添加輔助線的情況下,寫出除上述條件外的另外四組條件,將答案直接寫在下面的橫線上.)
(1):
∠DAB=∠DCB且∠ADC=∠ABC
;
(2):
AB=CD且AD=BC
;
(3):
OA=OC且OD=OB

(4):
AB∥CD且∠DAB=∠DCB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)已知:如圖1,在△ABC中,∠ACB=90°,CD⊥AB于點D,點E在AC上,CE=BC,過E點作AC的垂線,交CD的延長線于點F.求證:AB=FC.
(2)如圖2,已知△ABC的三個頂點的坐標分別為A(-2,3)、B(-6,0)、C(-1,0).
(1)請直接寫出點A關于y軸對稱的點的坐標;
(2)將△ABC繞坐標原點O逆時針旋轉(zhuǎn)90°.畫出圖形,直接寫出點B的對應點的坐標;
(3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,四邊形ABCD四條邊上的中點分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點四邊形).
(1)四邊形EFGH的形狀是
平行四邊形
平行四邊形
,證明你的結(jié)論;
(2)當四邊形ABCD的對角線滿足
互相垂直
互相垂直
條件時,四邊形EFGH是矩形;
(3)你學過的哪種特殊四邊形的中點四邊形是矩形?
菱形
菱形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在平面直角坐標系xOy中,直線AB與x軸、y軸的交點分別為A、B,OB=3,,將∠OBA對折,使點O的對應點H恰好落在直線AB上,折痕交x軸于點C,

(1)求過A、B、C三點的拋物線解析式;

(2)若拋物線的頂點為D,在直線BC上是否存在點P,使得四邊形ODAP為平行四

邊形?若存在,求出點P的坐標;若不存在,說明理由;

(3)若點Q是拋物線上一個動點,使得以A、B、Q為頂點并且以AB為直角邊的直角三角形,直角寫出Q點坐標。

查看答案和解析>>

科目:初中數(shù)學 來源:2005年山東省濱州市中考數(shù)學試卷(解析版) 題型:解答題

(2005•濱州)(Ⅰ)已知:如圖,平行四邊形ABCD的對角線AC、BD相交于點O,EF過點O與AB、CD分別相交于點E、F.
求證:BE=DF.
(Ⅱ)請寫出使如圖所示的四邊形ABCD為平行四邊形的條件(例如,填:AB∥CD且AD∥BC.在不添加輔助線的情況下,寫出除上述條件外的另外四組條件,將答案直接寫在下面的橫線上.)
(1):______;
(2):______;
(3):______;
(4):______.

查看答案和解析>>

同步練習冊答案