【題目】已知,在△ABC中,AB=AC,點D、點O分別為BC、AC的中點,AE//BC.
(1)如圖1,求證:四邊形ADCE是矩形;
(2)如圖2,若點 F是 CE上一動點,在不添加任何輔助線的情況下,請直接寫出與四邊形 ABDF 面積相等的三角形和四邊形.
【答案】(1)證明見解析;(2)S△ABC,S四邊形ABDE,S矩形ADCE
【解析】
(1)首先得到四邊形ADCE是平行四邊形,然后利用有一個角是直角的平行四邊形是矩形判斷矩形即可;
(2)根據四邊形ADCE是矩形,得到AD∥CE,于是得到S△ADC=S△ADF=S△AED,即可得到結論.
(1)證明:∵點D、點O別是BC、AC的中點,
∴OD∥AB,
∴DE∥AB,
又∵AE∥BD,
∴四邊形ABDE是平行四邊形,
∵點D是BC的中點,
∴AE平行且等于DC,
∴四邊形AECD是平行四邊形,
∵AB=AC,D為BC的中點,
∴AD⊥BC,
∴四邊形ADCE是矩形;
(2)解:∵四邊形ADCE是矩形,
∴AD∥CE,
∴S△ADC=S△ADF=S△AED,
∴四邊形ABDF面積=S△ABC=S四邊形ABDE=S矩形ADCE.
科目:初中數學 來源: 題型:
【題目】若a是不為1的有理數,我們把 稱為a的差倒數.如:2的差倒數是=﹣1,﹣1的差倒數是.已知a1=﹣,a2是a1的差倒數,a3是a2的差倒數,a4是a3的差倒數,…,依此類推.
(1)分別求出a2,a3,a4的值;
(2)求a1+a2+a3+…+a3600的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是中線,E是AD的中點,過點A作AF∥BC交BE的延長線于F,連接CF.
(1)求證:AD=AF;
(2)如果AB=AC,試判斷四邊形ADCF的形狀,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】學校為了解全校名學生雙休日在家最愛選擇的電視頻道情況,問卷要求每名學生從“新聞,體育,電影,科教,其他”五項中選擇其一,隨機抽取了部分學生,調查結果繪制成未完成的統(tǒng)計圖表如下:
頻道 | 新聞 | 體育 | 電影 | 科教 | 其他 |
人數 |
求調查的學生人數及統(tǒng)計圖表中的值;
求選擇其他頻道在統(tǒng)計圖中對應扇形的圓心角的度數;
求全校最愛選擇電影頻道的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工廠甲、乙兩個部門各有員工400人,為了解這兩個部門員工的生產技能情況,進行了抽樣調查,過程如下,請補充完整.
收集數據
從甲、乙兩個部門各隨機抽取20名員工,進行了生產技能測試,測試成績(百分制)如下:
甲 78 86 74 81 75 76 87 70 75 90
75 79 81 70 74 80 86 69 83 77
乙 93 73 88 81 72 81 94 83 77 83
80 81 70 81 73 78 82 80 70 40
整理、描述數據
按如下分數段整理、描述這兩組樣本數據:
成績 人數 部門 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 0 | 0 | 1 | 11 | 7 | 1 |
乙 |
(說明:成績80分及以上為生產技能優(yōu)秀,70--79分為生產技能良好,60--69分為生產技能合格,60分以下為生產技能不合格)
分析數據
兩組樣本數據的平均數、中位數、眾數如下表所示:
部門 | 平均數 | 中位數 | 眾數 |
甲 | 78.3 | 77.5 | 75 |
乙 | 78 | 80.5 | 81 |
得出結論:
.估計乙部門生產技能優(yōu)秀的員工人數為____________;
.可以推斷出_____________部門員工的生產技能水平較高,理由為_____________.(至少從兩個不同的角度說明推斷的合理性)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,D是弧BC的中點,DE⊥AC交AC的延長線于E,⊙O的切線BF交AD的延長線于F.
(1)求證:DE是⊙O的切線;
(2)若DE=3,⊙O的半徑為5.求BF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖直線l:y=kx+6與x軸、y軸分別交于點B、C兩點,點B的坐標是(﹣8,0),點A的坐標為(﹣6,0).
(1)求k的值.
(2)若點P是直線l在第二象限內一個動點,當點P運動到什么位置時,△PAC的面積為3,求出此時直線AP的解析式.
(3)在x軸上是否存在一點M,使得△BCM為等腰三角形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,Rt△ABC中,∠BAC=90°,AB=5,AC=12,將△ABC沿射線BC方向平移m個單位長度到△DEF,頂點A、B、C分別與D、E、F對應,若以點A、D、E為頂點的三角形是等腰三角形,則m的值是 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com