【題目】如圖,在正方形ABCD中,EAD上一點,FBA延長線上的一點,AF=AE,.

1)求證:ABE≌△ADF

2)線段BEDF有什么關系?證明你的結論.

【答案】1)見解析;(2(2)BE=DF,BEDF;證明見解析

【解析】

1)根據(jù)正方形的性質和SAS即可證明;

2)根據(jù)旋轉的性質得出ABE≌△ADF,從而得出BE=DF,再根據(jù)正方形的性質得出BEDF

(1) ABCD是正方形,

DA=BA,DAB=DAF=90°,

ABEADF中,

,

ABE≌△ADFSAS

證明:(2)BE=DFBEDF;

延長BEDFG;

ABE≌△ADF,得BE=DF,∠ABE=ADF;

又∠AEB=DEG;

∴∠DGB=DAB=90°;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,BCABEAD上一點,△ABE沿BE折疊,點A恰好落在線段CE上的點F處.

1)求證:CFDE;

2)設m

m,試求∠ABE的度數(shù);

k,試求mk滿足的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點的平分線上一點,,求證:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中央電視臺舉辦的“中國詩詞大會”節(jié)目受到中學生的廣泛關注.某中學為了解該校九年級學生對觀看“中國詩詞大會”節(jié)目的喜愛程度,對該校九年級部分學生進行了隨機抽樣調查,并繪制出如圖所示的兩幅統(tǒng)計圖.在條形圖中,從左向右依次為:A 級(非常喜歡),B 級(較喜歡),C 級(一般),D 級(不喜歡).請結合兩幅統(tǒng)計圖,回答下列問題:

(1)本次抽樣調查的樣本容量是  ,表示“D級(不喜歡)”的扇形的圓心角為  °;

(2)若該校九年級有200名學生.請你估計該年級觀看“中國詩詞大會”節(jié)目B 級(較喜歡)的學生人數(shù);

(3)若從本次調查中的A級(非常喜歡)的5名學生中,選出2名去參加廣州市中學生詩詞大會比賽,已知A級學生中男生有3名,請用“列表”或“畫樹狀圖”的方法求出所選出的2名學生中至少有1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題10分)如圖,在ABC中,AC=BC,ACB=90°,O(圓心O在ABC內部)經過B、C兩點,交AB于點E,過點E作O的切線交AC于點F延長CO交AB于點G,作EDAC交CG于點D

(1)求證:四邊形CDEF是平行四邊形;

(2)若BC=3,tanDEF=2,求BG的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片ABCD,AB=4,BC=3,點PBC邊上,將CDP沿DP折疊,點C落在點E處,PE、DE分別交AB于點O、F,且OP=OF,則cosADF的值為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AEBC,AFCD,垂足分別為E,F(xiàn),且BE=DF.

(1)求證:ABCD是菱形;

(2)若AB=5,AC=6,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知ABC的三個頂點坐標分別是A(1,1),B(4,1),C(3,3).

(1)將ABC向下平移5個單位后得到A1B1C1,請畫出A1B1C1

(2)將ABC繞原點O逆時針旋轉90°后得到A2B2C2,請畫出A2B2C2;

(3)判斷以O,A1,B為頂點的三角形的形狀.(無須說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠A=20°,CD是∠BCA的平分線,△CDA中,DECA邊上的高,又有∠EDA=CDB,求∠B的大。

查看答案和解析>>

同步練習冊答案