如圖,已知AB是⊙O直徑,AC是⊙O弦,點(diǎn)D是
ABC
的中點(diǎn),弦DE⊥AB,垂足為F,DE交AC于點(diǎn)G.
(1)若過點(diǎn)E作⊙O的切線ME,交AC的延長線于點(diǎn)M(請補(bǔ)完整圖形),試問:ME=MG是否成立?若成立,請證明;若不成立,請說明理由;
(2)在滿足第(2)問的條件下,已知AF=3,F(xiàn)B=
4
3
,求AG與GM的比.
(1)ME=MG成立,理由如下:
如圖,連接EO,并延長交⊙O于N,連接BC;
∵AB是⊙O的直徑,且AB⊥DE,
AD
=
AE
,
∵點(diǎn)D是
ABC
的中點(diǎn),
AD
=
DBC
,
AE
=
DBC
,
AC
=
DBE
,即AC=DE,∠N=∠B;
∵M(jìn)E是⊙O的切線,
∴∠MEG=∠N=∠B,
又∵∠B=90°-∠GAF=∠AGF=∠MGE,
∴∠MEG=∠MGE,故ME=MG.

(2)由相交弦定理得:DF2=AF•FB=3×
4
3
=4,即DF=2;
故DE=AC=2DF=4;
∵∠FAG=∠CAB,∠AFG=∠ACB=90°,
∴△AFG△ACB,
AG
AB
=
AF
AC
,即
AG
3+
4
3
=
3
4

解得AG=
13
4
,GC=AC-AG=
3
4

設(shè)ME=MG=x,則MC=x-
3
4
,MA=x+
13
4

由切割線定理得:ME2=MC•MA,即x2=(x-
3
4
)(x+
13
4
),
解得MG=x=
39
40
;
∴AG:MG=
13
4
39
40
=10:3,即AG與GM的比為
10
3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點(diǎn)E,點(diǎn)D在AB上,DE⊥EB.
(1)求證:AC是△BDE的外接圓的切線;
(2)若AD=2
6
,AE=6
2
,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(diǎn),BP的延長線交⊙O于點(diǎn)Q,過點(diǎn)Q的直線交OA延長線于點(diǎn)R,且RP=RQ
求證:直線QR是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點(diǎn)C是以AB為直徑的⊙O上一點(diǎn),CH⊥AB于點(diǎn)H,過點(diǎn)B作⊙O的切線交直線AC于點(diǎn)D,點(diǎn)E為CH的中點(diǎn),連接AE并延長交BD于點(diǎn)F,直線CF交AB的延長線于G.
(1)求證:AE•FD=AF•EC;
(2)求證:FC=FB;
(3)若FB=FE=2,求⊙O的半徑r的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知PAB是⊙O的割線,AB為⊙O的直徑,PC為⊙O的切線,C為切點(diǎn),BD⊥PC于點(diǎn)D,交⊙O于點(diǎn)E,PA=AO=OB=1.
(Ⅰ)求∠P的度數(shù);
(Ⅱ)求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,⊙O是△ABC的外接圓,過點(diǎn)C的切線交AB的延長線于點(diǎn)D,CD=2
7
,AB=BC=3.求BD和AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

圓外切等腰梯形的底角為30°,中位線的長為8,則該圓的直徑長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知⊙O是以坐標(biāo)原點(diǎn)O為圓心,1為半徑的圓,∠AOB=45°,點(diǎn)P在x軸上運(yùn)動,若過點(diǎn)P且與OA平行的直線與⊙O有公共點(diǎn),設(shè)P(x,0),則x的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線PA交⊙O于A、B兩點(diǎn),AE是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),且AC平分∠PAE,過C作CD⊥PA,垂足為D.
(1)求證:CD為⊙O的切線;
(2)若DC=4,AC=5,求⊙O的直徑的AE.

查看答案和解析>>

同步練習(xí)冊答案