【題目】如圖,AB是⊙O的直徑,且經(jīng)過弦CD的中點H,已知cos∠CDB= ,BD=5,則OH的長度為( )
A.
B.
C.1
D.
【答案】D
【解析】解:連接OD,如圖所示: ∵AB是⊙O的直徑,且經(jīng)過弦CD的中點H,
∴AB⊥CD,
∴∠OHD=∠BHD=90°,
∵cos∠CDB= = ,BD=5,
∴DH=4,
∴BH= =3,
設(shè)OH=x,則OD=OB=x+3,
在Rt△ODH中,由勾股定理得:x2+42=(x+3)2 ,
解得:x= ,
∴OH= ;
故選:D.
【考點精析】掌握圓周角定理和解直角三角形是解答本題的根本,需要知道頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半;解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC與△ABD中,AD與BC相交于O點,∠1=∠2,請你添加一個條件(不再添加其它線段,不再標注或使用其他字母),使AC=BD,并給出證明.
你添加的條件是?并證明。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,蹺蹺板AB的一端B碰到地面時,AB與地面的夾角為18°,且OA=OB=3m.
(1)求此時另一端A離地面的距離(精確到0.1m);
(2)蹺動AB,使端點A碰到地面,請畫出點A運動的路線(寫出畫法,并保留畫圖痕跡),并求出點A運動路線的長.
(參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列等式
12=1= ×1×2×(2+1)
12+22= ×2×3×(4+1)
12+22+32= ×3×4×(6+1)
12+22+32+42= ×4×5×(8+1)…
可以推測12+22+32+…+n2= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象在第一象限交于點A(4,2),與y軸的負半軸交于點B,且OB=6,
(1)求函數(shù)y= 和y=kx+b的解析式.
(2)已知直線AB與x軸相交于點C,在第一象限內(nèi),求反比例函數(shù)y= 的圖象上一點P,使得S△POC=9.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點,ME⊥AM,ME交AD的延長線于點E.若AB=12,BM=5,則DE的長為( )
A.18
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了綠化環(huán)境,育英中學八年級三班同學都積極參加植樹活動,今年植樹節(jié)時,該班同學植樹情況的部分數(shù)據(jù)如圖所示,請根據(jù)統(tǒng)計圖信息,回答下列問題:
(1)八年級三班共有多少名同學?
(2)條形統(tǒng)計圖中,m= , n= .
(3)扇形統(tǒng)計圖中,試計算植樹2棵的人數(shù)所對應(yīng)的扇形圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在學校組織的游藝會上,投飛標游藝區(qū)游戲區(qū)規(guī)則如下,如圖投到A區(qū)和B區(qū)的得分不同,A區(qū)為小圓內(nèi)部分,B區(qū)為大圓內(nèi)小圓外部分(擲中一次記一個點)現(xiàn)統(tǒng)計小華、小明和小芳擲中與得分情況如圖所示.
(1)求擲中A區(qū)、B區(qū)一次各得多少分?
(2)依此方法計算小明的得分為多少分?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com