【題目】某超市銷售一種文具,進(jìn)價(jià)為 5(元/件),售價(jià)為6(元/件)時(shí),當(dāng)天的銷售量為100件,在銷售過程中發(fā)現(xiàn):售價(jià)每上漲0.5元,當(dāng)天的銷售量就減少5件,設(shè)當(dāng)天銷售單價(jià)統(tǒng)一為(元/件)(,且是按0.5元的倍數(shù)上漲),當(dāng)天銷售利潤(rùn)為元.
(1)求與的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
(2)要使當(dāng)天銷售利潤(rùn)不低于240元,求當(dāng)天銷售單價(jià)的范圍;
(3)若每件文具的利潤(rùn)不超過60%,要使當(dāng)天獲得利潤(rùn)最大,每件文具售價(jià)為多少元?并求出最大利潤(rùn).
【答案】(1);(2)當(dāng)天銷售單價(jià)所在的范圍為;(3)每件文具售價(jià)為8元時(shí),最大利潤(rùn)為240元.
【解析】
(1)根據(jù)當(dāng)天銷售利潤(rùn)等于每件利潤(rùn)乘以當(dāng)天銷量,找到當(dāng)天銷量與單價(jià)的關(guān)系即可得出答案;
(2)先求出利潤(rùn)等于240元時(shí)的單價(jià),再根據(jù)二次函數(shù)圖像的性質(zhì)確定范圍;
(3)先確定單價(jià)的范圍,再根據(jù)二次函數(shù)的性質(zhì)求最值.
(1)由題意
∴與的函數(shù)關(guān)系式為:
(2)要使當(dāng)天利潤(rùn)不低于240元,則.
解得,,
,拋物線的開口向下,
當(dāng)天銷售單價(jià)所在的范圍為
(3)每件文具利潤(rùn)不超過60%
,得
文具的銷售單價(jià)為
由(1)得
對(duì)稱軸為
在對(duì)稱軸的左側(cè),且隨著的增大而增大
當(dāng)時(shí),取得最大值,此時(shí),
即每件文具售價(jià)為8元時(shí),最大利潤(rùn)為240元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某市的創(chuàng)優(yōu)工作中,某社區(qū)計(jì)劃對(duì)的區(qū)域進(jìn)行綠化.經(jīng)投標(biāo),由甲、乙兩個(gè)施工隊(duì)來完成,已知甲隊(duì)每天能完成綠化面積是乙隊(duì)每天能完成綠化面積的2倍,并且在獨(dú)立完成面積為區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用3天.
(1)求甲、乙兩施工隊(duì)每天分別能完成的綠化面積是多少?
(2)設(shè)先由甲隊(duì)施工m天,再由乙隊(duì)施工n天,剛好完成綠化任務(wù),
①求n與m的關(guān)系式;
②若甲、乙兩隊(duì)施工的總天數(shù)不超過14天,問甲工程隊(duì)最少施工多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2-2ax+3與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C,點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)D為拋物線的頂點(diǎn),對(duì)稱軸與x軸交于點(diǎn)E.
(1)填空:a= ,點(diǎn)B的坐標(biāo)是 ;
(2)連結(jié)BD,點(diǎn)M是線段BD上一動(dòng)點(diǎn)(點(diǎn)M不與端點(diǎn)B,D重合),過點(diǎn)M作MN⊥BD,交拋物線于點(diǎn)N(點(diǎn)N在對(duì)稱軸的右側(cè)),過點(diǎn)N作NH⊥x軸,垂足為H,交BD于點(diǎn)F,點(diǎn)P是線段OC上一動(dòng)點(diǎn),當(dāng)△MNF的周長(zhǎng)取得最大值時(shí),求FP+PC的最小值;
(3)在(2)中,當(dāng)△MNF的周長(zhǎng)取得最大值時(shí),FP+PC取得最小值時(shí),如圖2,把點(diǎn)P向下平移個(gè)單位得到點(diǎn)Q,連結(jié)AQ,把△AOQ繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一定的角度α(0°<α<360°),得到△A′OQ′,其中邊A′Q′交坐標(biāo)軸于點(diǎn)G.在旋轉(zhuǎn)過程中,是否存在一點(diǎn)G,使得GQ′=OG?若存在,請(qǐng)直接寫出所有滿足條件的點(diǎn)Q′的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校就“遇見路人摔倒后如何處理”的問題,隨機(jī)抽取該校部分學(xué)生進(jìn)行問卷調(diào)查,圖1和圖2是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計(jì)圖. 請(qǐng)根據(jù)圖中提供的信息,解答下列問題:
(1)該校隨機(jī)抽查了 名學(xué)生?請(qǐng)將圖1補(bǔ)充完整;
(2)在圖2中,“視情況而定”部分所占的圓心角是 度;
(3)在這次調(diào)查中,甲、乙、丙、丁四名學(xué)生都選擇“馬上救助”,現(xiàn)準(zhǔn)備從這四人中隨機(jī)抽取兩人進(jìn)行座談,試用列表或樹形圖的方法求抽取的兩人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象經(jīng)過點(diǎn),,,與軸的負(fù)半軸相交,且交點(diǎn)在的上方.下列四個(gè)結(jié)論中一定正確的是______.
①;②;③;④.(填序號(hào)即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織了2000名學(xué)生參加“愛我中華”知識(shí)競(jìng)賽活動(dòng),為了了解本次知識(shí)競(jìng)賽的成績(jī)分布情況,從中抽取了部分學(xué)生的得分進(jìn)行統(tǒng)計(jì):
成績(jī)(分) | 頻數(shù) | 頻率 |
20 | ||
16 | 0.08 | |
0.15 |
請(qǐng)你根據(jù)以上的信息,回答下列問題:
(1) , ;
(2)在扇形統(tǒng)計(jì)圖中,“成績(jī)滿足”對(duì)應(yīng)扇形的圓心角的度數(shù)是 ;
(3)若將得分轉(zhuǎn)化為等級(jí),規(guī)定:評(píng)為,評(píng)為,評(píng)為,評(píng)為.這次全校參加競(jìng)賽的學(xué)生約有 人參賽成績(jī)被評(píng)為“”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,以點(diǎn)為圓心,6為半徑的圓上有一個(gè)動(dòng)點(diǎn).連接、、,則的最小值是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是某小型汽車的側(cè)面示意圖,其中矩形ABCD表示該車的后備箱,在打開后備箱的過程中,箱蓋ADE可以繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)角為60°時(shí),箱蓋ADE落在AD′E′的位置(如圖2所示).已知AD=96厘米,DE=28厘米,EC=42厘米.
(1)求點(diǎn)D′到BC的距離;
(2)求E、E′兩點(diǎn)的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形AOBC的頂點(diǎn)O在原點(diǎn),邊AO,BO分別在x軸和y軸上,點(diǎn)C坐標(biāo)為(4,4),點(diǎn)D是BO的中點(diǎn),點(diǎn)P是邊OA上的一個(gè)動(dòng)點(diǎn),連接PD,以P為圓心,PD為半徑作圓,設(shè)點(diǎn)P橫坐標(biāo)為t,當(dāng)⊙P與正方形AOBC的邊相切時(shí),t的值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com