精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在四邊形中,為一條對角線,,,,的中點,連接

1)求證:四邊形為菱形;

2)連接,若平分,,求的長.

【答案】1)見解析;(2

【解析】

1)由DE=BC,DEBC,證得四邊形BCDE是平行四邊形,,再證明BE=DE即可得到結論;

2)由ADBC,AC平分∠BAD證得AB=BC=2,求出∠ADB=30°,,再利用三角函數求出AC.

1)∵,的中點,

DE=BC

ADBC

∴四邊形BCDE是平行四邊形,

AE=DE,

BE=DE

∴四邊形BCDE是菱形;

2)連接AC

ADBC,AC平分∠BAD,

∴∠BAC=DAC=BCA,

AB=BC=2,

AD=2BC=4,

sinADB=,

∴∠ADB=30°

∴∠DAC=30°,∠ADC=60°,

RtACD中,AD=4,

AC=.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形中,,,, ,動點,同時從點出發(fā),點的速度沿折線運動到點,點的速度沿運動到點,設,同時出發(fā)時,的面積為,則的函數圖象大致是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知函數為常數且),已知當時,;當時,,請對該函數及其圖像進行如下探究:

1)求函數的解析式;

2)如圖,請在平面直角坐標系中,畫出該函數的圖像;

3)結合所畫函數圖像,請寫出該函數的一條性質;

4)解決問題:若函數至少有兩個公共點,請直接寫出的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,甲樓AB20米,乙樓CD10米,兩棟樓之間的水平距離BD30m,為了測量某電視塔EF的高度,小明在甲樓樓頂A處觀測電視塔塔頂E,測得仰角為37°,小明在乙樓樓頂C處觀測電視塔塔頂E,測得仰角為45°,求該電視塔的高度EF

(參考數據:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,某人在山坡坡腳處測得電視塔尖點的仰角為,沿山坡向上走到處再測得點的仰角為,已知米,山坡坡度,且在同一條直線上,其中測傾器高度忽略不計.

1)求電視塔的高度;(計算結果保留根號形式)

2)求此人所在位置點的鉛直高度.(結果精確到0.1米,參考數據:,)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,軸交于點,將點向右平移兩個單位長度,得到點,點在拋物線上.

1)①直接寫出拋物線的對稱軸是__________;

②用含的代數式表示;

2)橫、縱坐標都是整數的點叫做整點.點恰好為整點,若拋物線在點之間的部分與線段所圍成的區(qū)域內(不含邊界)恰有兩個整點,結合函數圖象,求的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知ABP的直徑,點CP上,DP外一點,且∠ADC90°,2B+DAB180°.

(1)證明:直線CDP的切線;

(2)DC2,AD4,求P的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】重慶一中開展了愛生活愛運動的活動,以鼓勵學生積極參與體育鍛煉.為了解學生每周體育鍛煉時間,學校在活動之前對八年級同學進行了抽樣調査,并根據調査結果將學生每周的體育鍛煉時間分為3小時、4小時、5小時、6小時、7小時共五種情況.小明根據調查結構制作了如圖兩幅統(tǒng)計圖,請你結合圖中所給信息解答下列問題:

(整理數據)

愛生活愛運動的活動結束之后,再次抽查這部分學生的體育鍛煉時間:

一周體育鍛煉時間(小時)

3

4

5

6

7

人數

3

5

15

a

10

活動之后部分學生體育鍛煉時間的統(tǒng)計表

(分析數據)

平均數

中位數

眾數

活動之前鍛煉時間(小時)

5

5

5

活動之后鍛煉時間(小時)

5.52

b

c

請根據調查信息

1)補全條形統(tǒng)計圖,并計算a   ,b   小時,c   小時;

(2)小亮同學在活動之前與活動之后的這兩次調查中,體育鍛煉時間均為5小時,根據體育鍛煉時間由多到少進行排名統(tǒng)計,請問他在被調查同學中體育鍛煉時間排名靠前的是   (填“活動之前”或“活動之后”),理由是   ;

3)已知八年級共2200名學生,請估算全年級學生在活動結束后,每周體育鍛煉時間至少有6小時的學生人數有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知一次函數ykx+b的圖象與x軸,y軸分別相交于A,B兩點,且與反比例函數y交于點C,D.作CEx軸,垂足為E,CFy軸,垂足為F.點BOF的中點,四邊形OECF的面積為16,點D的坐標為(4,﹣b).

1)求一次函數表達式和反比例函數表達式;

2)求出點C坐標,并根據圖象直接寫出不等式kx+b的解集.

查看答案和解析>>

同步練習冊答案