【題目】如圖,在平面直角坐標系中,一次函數(shù)y=2x﹣4的圖象分別交x、y軸于點A、B,將直線AB繞點B按順時針方向旋轉(zhuǎn)45°,交x軸于點C,則直線BC的函數(shù)表達式是_____.
【答案】y=x﹣4
【解析】
根據(jù)已知條件得到A(2,0),B(0,﹣4),求得OA=2,OB=4,過A作AF⊥AB交BC于F,過F作FE⊥x軸于E,得到AB=AF,根據(jù)全等三角形的性質(zhì)得到AE=OB=4,EF=OA=2,求得F(6,﹣2),設直線BC的函數(shù)表達式為:y=kx+b,解方程組于是得到結論.
解:∵一次函數(shù)y=2x﹣4的圖象分別交x、y軸于點A、B,
∴令x=0,得y=﹣4,令y=0,則x=2,
∴A(2,0),B(0,﹣4),
∴OA=2,OB=4,
過A作AF⊥AB交BC于F,過F作FE⊥x軸于E,
∵∠ABC=45°,
∴△ABF是等腰直角三角形,
∴AB=AF,
∵∠OAB+∠ABO=∠OAB+∠EAF=90°,
∴∠ABO=∠EAF,
∴△ABO≌△FAE(AAS),
∴AE=OB=4,EF=OA=2,
∴F(6,﹣2),
設直線BC的函數(shù)表達式為:y=kx+b,
∴,解得,
∴直線BC的函數(shù)表達式為:y=x﹣4,
故答案為:y=x﹣4.
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究:
如圖1,一次函數(shù)的圖象與x軸和y軸分別交于A,B兩點,再將△AOB沿直線CD對折,使點A與點B重合.直線CD 與x軸交于點C,與AB交于點D
(1)求點A和點B的坐標
(2)求線段OC的長度
(3)如圖 2,直線 l:y=mx+n,經(jīng)過點 A,且平行于直線 CD,已知直線 CD 的函數(shù)關系式為 ,求 m,n 的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,△ABC中,∠ACB=90°,AC=BC,以AC為邊在同一平面內(nèi)作等邊△ACD,連接BD,則∠ADB=______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】墊球是排球隊常規(guī)訓練的重要項目之一,下列圖表中的數(shù)據(jù)是運動員甲、乙、丙三人每人10次墊球測試的成績,測試規(guī)則為每次連續(xù)接球10個,每墊球到位1個記1分,已知運動員甲測試成績的中位數(shù)和眾數(shù)都是7.
運動員甲測試成績統(tǒng)計表
測試序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成績(分) | 7 | 6 | 8 | 7 | 6 | 8 | 6 | 8 |
(1)填空:______;______.
(2)要從他們?nèi)酥羞x擇一位墊球較為穩(wěn)定的接球能手,你認為選誰更合適?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點E為正方形ABCD的邊AB上一點,EF⊥EC,且EF=EC,連接AF.過點F作FN垂直于BA的延長線于點N.
(1)求∠EAF的度數(shù);
(2)如圖2,連接FC交BD于M,交AD于N.猜想BD,AF,DM三條線段的等量關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,CD∥AB,E是AD中點,CE交BA延長線于點F.
(1)試說明:CD=AF;
(2)若BC=BF,試說明:BE⊥CF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠B=90度,AC將梯形分成兩個三角形,其中△ACD是周長為18cm的等邊三角形,則該梯形的中位線的長是( 。
A. 9cm B. 12cm C. cm D. 18cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 某公司的一批某品牌襯衣的質(zhì)量抽檢結果如下:
抽檢件數(shù) | 50 | 100 | 200 | 300 | 400 | 500 |
次品件數(shù) | 0 | 4 | 16 | 19 | 24 | 30 |
(1)請結合表格數(shù)據(jù)直接寫出這批襯衣中任抽1件是次品的概率.
(2)如果銷售這批襯衣600件,至少要準備多少件正品襯衣供買到次品的顧客退換?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店購進一批進價為20元/件的日用商品,第一個月,按進價提高50%的價格出售,售出400件,第二個月,商店準備在不低于原售價的基礎上進行加價銷售,根據(jù)銷售經(jīng)驗,提高銷售單價會導致銷售量的減少.銷售量y(件)與銷售單價x(元)的關系如圖所示.
(1)圖中點P所表示的實際意義是 ;銷售單價每提高1元時,銷售量相應減少 件;
(2)請直接寫出y與x之間的函數(shù)表達式: ;自變量x的取值范圍為 ;
(3)第二個月的銷售單價定為多少元時,可獲得最大利潤?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com