2.先化簡(jiǎn),再求值:
已知x=1,y=2,求代數(shù)式x-2($\frac{1}{4}x-\frac{1}{3}{y}^{2}$)+(-$\frac{3}{2}x+\frac{1}{3}{y}^{2}$)的值.

分析 原式去括號(hào)合并得到最簡(jiǎn)結(jié)果,把x與y的值代入計(jì)算即可求出值.

解答 解:原式=x-$\frac{1}{2}$x+$\frac{2}{3}$y2-$\frac{3}{2}$x+$\frac{1}{3}$y2=-x+y2,
當(dāng)x=1,y=2時(shí),原式=-1+4=3.

點(diǎn)評(píng) 此題考查了整式的加減-化簡(jiǎn)求值,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn),點(diǎn)P到點(diǎn)A,B和C的距離分別為1,2,3,將△ABP繞點(diǎn)B旋轉(zhuǎn)至△CBP′,連接PP′.
(1)求證:△BPP′是等腰直角三角形;
(2)求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

13.閱讀材料:對(duì)于任何數(shù),我們規(guī)定符號(hào)$|\begin{array}{l}{a}&\\{c}&3tqdpr9\end{array}|$的意義是:$|\begin{array}{l}{a}&\\{c}&b5xyxwg\end{array}|$=ad-bc.例如:$|\begin{array}{l}{1}&{2}\\{3}&{4}\end{array}|$=1×4-2×3=-2.
(1)按照這個(gè)規(guī)定,請(qǐng)你計(jì)算$|\begin{array}{l}{5}&{6}\\{-2}&{8}\end{array}|$的值.
(2)按照這個(gè)規(guī)定,請(qǐng)你計(jì)算當(dāng)|x+$\frac{1}{2}$|+(y-2)2=0時(shí),$|\begin{array}{l}{2{x}^{2}-y}&{{x}^{2}+y}\\{3}&{-1}\end{array}|$值.
(3)按照這個(gè)規(guī)定,當(dāng)$|\begin{array}{l}{-2x-1}&{-2}\\{\frac{5}{3}x+2}&{\frac{1}{2}}\end{array}|$=7時(shí),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列y關(guān)于x的函數(shù)中,是正比例函數(shù)的是( 。
A.y=x2B.y=$\frac{2}{x}$C.y=$\frac{x}{2}$D.y=$\frac{1}{2}x+1$

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知-2x5yn與與xmy4是同類(lèi)項(xiàng),則2m+n=14.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.計(jì)算:
(1)$\sqrt{2}$sin45°+sin30°•cos60°;    
(2)$\sqrt{4}$+($\frac{1}{2}$)-1-2cos60°+(2-π)0
(3)$\sqrt{2}$+1-3tan230°+2$\sqrt{(sin45°-1)^{2}}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

14.解方程組$\left\{\begin{array}{l}{2x+3y+4=0,①}\\{5x+6y+7=0,②}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某商場(chǎng)銷(xiāo)售一批襯衫,平均每天可售出20件,每件盈利40元.為了擴(kuò)大銷(xiāo)售,增加盈利,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.經(jīng)調(diào)查發(fā)現(xiàn),在一定范圍內(nèi),襯衫的單價(jià)每下降1元,商場(chǎng)平均每天可多售出2件.
(1)如果商場(chǎng)通過(guò)銷(xiāo)售這批襯衫每天獲利1200元,那么襯衫的單價(jià)應(yīng)下降多少元?
(2)當(dāng)每件襯衫的單價(jià)下降多少元時(shí),每天通過(guò)銷(xiāo)售襯衫獲得的利潤(rùn)最大?最大利潤(rùn)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,在△ABC中,AD為BC邊上的中線,若∠BAC<90°,作EA⊥AC,F(xiàn)A⊥BA,且AE=AC,AF=AB.連接EF,寫(xiě)出AD與EF的數(shù)量關(guān)系,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案