如圖,直線與反比例函數(shù)的圖象交于A、B兩點(diǎn),與x軸交于點(diǎn)C,已知點(diǎn)A的坐標(biāo)為(-1,m).
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P(n,1)是反比例函數(shù)圖象上一點(diǎn),過點(diǎn)P作PE⊥x軸于點(diǎn)E,延長(zhǎng)EP交直線AB于點(diǎn)F,求△CEF的面積.
解:(1)將點(diǎn)A的坐標(biāo)代入,可得:!帱c(diǎn)A的坐標(biāo)為(-1,-2)。
將點(diǎn)A(-1,-2)代入反比例函數(shù),可得:,。
∴反比例函數(shù)解析式為:。
(2)將點(diǎn)P的縱坐標(biāo)y=-1,代入反比例函數(shù)關(guān)系式可得:x=-2,
∴點(diǎn)P的坐標(biāo)為(-2,-1)
將點(diǎn)F的橫坐標(biāo)x=-2代入直線解析式可得:y=-3,∴點(diǎn)F的坐標(biāo)為(-2,-3)。
∴EF=3,CE=OE+OC=2+1=3,∴。
【解析】(1)將點(diǎn)A的坐標(biāo)代入直線解析式求出m的值,再將點(diǎn)A的坐標(biāo)代入反比例函數(shù)解析式可求出k的值,繼而得出反比例函數(shù)關(guān)系式。
(2)將點(diǎn)P的縱坐標(biāo)代入反比例函數(shù)解析式可求出點(diǎn)P的橫坐標(biāo),將點(diǎn)P的橫坐標(biāo)和點(diǎn)F的橫坐標(biāo)相等,將點(diǎn)F的橫坐標(biāo)代入直線解析式可求出點(diǎn)F的縱坐標(biāo),將點(diǎn)的坐標(biāo)轉(zhuǎn)換為線段的長(zhǎng)度后,即可計(jì)算△CEF的面積。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
m | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
直線與反比例函數(shù)的圖象相交于點(diǎn)、,
與軸交于點(diǎn),其中點(diǎn)的坐標(biāo)為,點(diǎn)的橫坐標(biāo)為.
(1)試確定反比例函數(shù)的關(guān)系式.
(2)求的面積.
(3)如圖直接寫出反比例函數(shù)值大于一次函數(shù)值的自變量的取值范圍.
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
直線與反比例函數(shù)的圖象相交于點(diǎn)、,
與軸交于點(diǎn),其中點(diǎn)的坐標(biāo)為,點(diǎn)的橫坐標(biāo)為
1.試確定反比例函數(shù)的關(guān)系式.
2.求的面積
3.如圖直接寫出反比例函數(shù)值大于一次函數(shù)值的自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:《第22章 二次函數(shù)》2012年單元測(cè)試卷A(亳州市風(fēng)華中學(xué))(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆重慶一中九年級(jí)上學(xué)期開學(xué)考試數(shù)學(xué)卷 題型:填空題
直線與反比例函數(shù)的圖象相交于點(diǎn)、,
與軸交于點(diǎn),其中點(diǎn)的坐標(biāo)為,點(diǎn)的橫坐標(biāo)為.
(1)試確定反比例函數(shù)的關(guān)系式.
(2)求的面積.
(3)如圖直接寫出反比例函數(shù)值大于一次函數(shù)值的自變量的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com