如圖所示,直線a∥b,直線c與直線a,b分別相交于點A、點B,AM⊥b,垂足為點M,若∠1=58°,則∠2=   
【答案】分析:根據(jù)“在同一平面內(nèi),垂直于兩條平行線中的一條直線,那么必定垂直于另一條直線”推知AM⊥a;然后由平角是180°、∠1=58°來求∠2的度數(shù)即可.
解答:解:∵直線a∥b,AM⊥b,
∴AM⊥a(在同一平面內(nèi),垂直于兩條平行線中的一條,那么必定垂直于另一條);
∴∠2=180°-90°-∠1;
∵∠1=58°,
∴∠2=32°.
故答案是:32°.
點評:本題主要考查了平行線的性質(zhì).在同一平面內(nèi),垂直于兩條平行線中的一條直線,那么必定垂直于另一條直線.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

3、如圖所示,直線AB,CD相交于O,所形成的∠1,∠2,∠3,∠4中,下列分類不同于其它三個的(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示:直線MN⊥RS于點O,點B在射線OS上,OB=2,點C在射線ON上,OC=2,點E是射線OM上一動點,連接EB,過O作OP⊥EB于P,連接CP,過P作PF⊥PC交射線OS于F.

(1)求證:△POC∽△PBF.
(2)當OE=1,OE=2時,BF的長分別為多少?當OE=n時,BF=
4
n
4
n

(3)當OE=1時,S△EBF=S1;OE=2時,S△EBF=S2;…,OE=n時,S△EBF=Sn.則S1+S2+…+Sn=
2n
2n
.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,直線a、b被直線c所截,現(xiàn)給出下列四種條件:①∠2=∠6;②∠2=∠8;③∠1+∠4=180°;④∠3=∠8,其中能判斷是a∥b的條件的序號是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖所示,直線AB∥CD,CO⊥OD于O點,并且∠1=40度.則∠D的度數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

將一張矩形紙板沿對角線剪開得到兩個三角形,△ABC與△DEF,∠B=∠E=90°,如圖①所示.
(1)將△ABC與△DEF按如圖②方式擺放,使點B與E重合,點C、B、E、F在同一條直線上,邊AB與DE重合,連接CD、FA,并延長FA交CD于G.試證:FA⊥CD
(2)在(1)所述基礎上,將紙板△ACB沿直線CF向右平移,并剪去ED右側(cè)部分,此時CA與ED的交點為A1,連接CD、FA1,并延長FA1交CD于G,如圖③所示,直線FA1和CD的位置關系是
 
(直接寫出)
(3)在(2)所述基礎上,將紙板△A1CE繞點E逆時針旋轉(zhuǎn)α度(0°<α<90°)至如圖④所示位置,連接CD、FA1,CD與FA1交于點G,試判斷FA1與CD的位置關系?并說明理由.
精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案