【答案】
分析:把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90度,得到△ADG,根據(jù)旋轉(zhuǎn)的性質(zhì)得到△ABE≌△ADG,再利用SSS證明△AGF≌△AEF,進(jìn)而得出③正確;
由△AGF≌△AEF,得出∠1=∠2,根據(jù)角平分線的性質(zhì)得出AD=AH,則AH=AB,再由角平分線的判定得出AE平分∠BEF,故①正確;
由AE平分∠BEF及等角的余角相等得出∠BAE=∠HAE,再根據(jù)角平分線的性質(zhì)得出BE=HE,再結(jié)合已知條件EF=BE+DF及BE=DG即可得出FH=FD,故②正確;
根據(jù)△AEF≌△AGF,△ABE≌△ADG,即可得出S
△EAF=S
△ABE+S
△ADF,故④正確;
由EF=HE+FH,BE=HE,F(xiàn)H=FD,得出EF=BE+FD,則△CEF的周長=BC+CD,進(jìn)而求出△CEF的周長為2,故⑤正確.
解答:解:如圖:把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90度,得到△ADG,則△ABE≌△ADG,∠EAG=∠BAD=90°,
∴∠ABE=∠ADG=90°,AE=AG,BE=DG,
∴∠FDG=∠FDA+∠ADG=90°+90°=180°,
∴F、D、G三點(diǎn)共線.
∵EF=BE+DF,
∴EF=DG+DF=GF.
∵在△AGF與△AEF中,
,
∴△AGF≌△AEF(SSS),
∴∠GAF=∠EAF,∠1=∠2,
∵∠GAF+∠EAF=∠EAG=90°,
∴∠EAF=
×90°=45°,故③正確;
∵∠1=∠2,AD⊥FG于D,AH⊥EF于H,
∴AD=AH,
∵AD=AB,
∴AH=AB,
又∵AH⊥EF于H,AB⊥BC于B,
∴AE平分∠BEF,故①正確;
∵AE平分∠BEF,
∴∠AEB=∠AEH,
∵∠AEB+∠BAE=90°,∠AEH+∠HAE=90°,
∴∠BAE=∠HAE,
又∵EH⊥AH于H,EB⊥AB于B,
∴BE=HE,
∵BE=DG,
∴HE=DG,
∵EF=HE+FH,GF=DG+FD,EF=GF,
∴FH=FD,故②正確;
∵△AEF≌△AGF,
∴S
△EAF=S
△GAF.
∵△ABE≌△ADG,
∴S
△GAF=S
△ADG+S
△ADFS
△ABE+S
△ADF,
∴S
△EAF=S
△ABE+S
△ADF,故④正確;
∵EF=HE+FH,BE=HE,F(xiàn)H=FD,
∴EF=BE+FD,
∴△CEF的周長=EF+EC+CF=BE+FD+EC+CF=BC+CD=2AB=2,故⑤正確.
故選D.
點(diǎn)評:本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),旋轉(zhuǎn)的性質(zhì),角平分線的判定與性質(zhì),三角形的周長與面積,綜合性較強(qiáng),難度適中,根據(jù)旋轉(zhuǎn)的性質(zhì)作出輔助線是解題的關(guān)鍵.