精英家教網 > 初中數學 > 題目詳情

【題目】如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數y= 在第一象限的圖象經過點B,則△OAC與△BAD的面積之差SOAC﹣SBAD為(

A.36
B.12
C.6
D.3

【答案】D
【解析】解:設△OAC和△BAD的直角邊長分別為a、b,
則點B的坐標為(a+b,a﹣b).
∵點B在反比例函數y= 的第一象限圖象上,
∴(a+b)×(a﹣b)=a2﹣b2=6.
∴SOAC﹣SBAD= a2 b2= (a2﹣b2)= ×6=3.
故選D.
設△OAC和△BAD的直角邊長分別為a、b,結合等腰直角三角形的性質及圖象可得出點B的坐標,根據三角形的面積公式結合反比例函數系數k的幾何意義以及點B的坐標即可得出結論.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖所示,則下列4個結論::①b2﹣4ac<0;②2a﹣b=0;③a+b+c<0;④點M(x1 , y1)、N(x2 , y2)在拋物線上,若x1<x2 , 則y1≤y2 , 其中正確結論的個數是(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結論:
①ac<0 ②2a+b=0 ③4a+2b+c>0 ④對任意實數x均有ax2+bx≥a+b
正確的結論序號為:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】以x為自變量的二次函數y=﹣x2+(2m+2)x﹣(m2+4m﹣3)中,m為不小于0的整數,它的圖象與x軸的交點A在原點左邊,交點B在原點右邊.
(1)求這個二次函數的解析式;
(2)設點C為此二次函數圖象上的一點,且滿足△ABC的面積等于10,請求出點C的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小金魚在直角坐標系中的位置如圖所示,根據圖形解答下面的問題:

(1)分別寫出小金魚身上點A,B,C,D,E,F的坐標;

(2)小金魚身上的點的縱坐標都乘以-1,橫坐標不變,作出相應圖形,它與原圖案相比有哪些變化?

(3)小金魚身上的點的橫坐標都乘-1,所得圖形與原圖形相比有哪些變化?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在⊙O中,弦AB所對的劣弧是圓周長的 ,其中圓的半徑為4cm,求:

(1)求AB的長.
(2)求陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系O中,正方形A1B1C1O、A2B2C2B1、A3B3C3B2,…, 按圖所示的方式放置.點A1、A2、A3,…和點B1、B2、B3,…分別在直線軸上.已知C1(1,-1),C2, ),則點A3的坐標是________________________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列命題是真命題的是( )

A. a2=b2,a=b B. 若∠1+∠2=90,則∠1與∠2互余

C. 若∠α與∠β是同位角,則∠α=∠β D. a⊥b,b⊥c,則a⊥c

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將△ABC繞著點C順時針旋轉50°后得到△A′B′C′.若∠A=40°.∠B′=110°,則∠BCA′的度數是(

A.110°
B.80°
C.40°
D.30°

查看答案和解析>>

同步練習冊答案