【題目】如圖,∠MAN=15°,AB=BC=CD=DE=EF,則∠FEM=________

【答案】75°

【解析】

根據(jù)已知條件,利用等腰三角形的性質(zhì)及三角形的內(nèi)角和外角之間的關(guān)系進(jìn)行計(jì)算.

解答:解:∵AB=BC=CD=DE=EF,∠A=15°

∴∠BCA=∠A=15°,

∴∠CBD=∠BDC=∠BCA+∠A=15°+15°=30°,

∴∠BCD=180°-∠CBD+∠BDC=180°-60°=120°,

∴∠ECD=∠CED=180°-∠BCD-∠BCA=180°-120°-15°=45°,

∴∠CDE=180°-∠ECD+∠CED=180°-90°=90°,

∴∠EDF=∠EFD=180°-∠CDE-∠BDC=180°-90°-30°=60°,

∴∠MEF=∠EFD+∠A=60°+15°=75°

故答案為:75°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),已知點(diǎn)A(0,6)、點(diǎn)B(8,0),動(dòng)點(diǎn)P從點(diǎn)A開始在線段AO上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)O移動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B開始在線段BA上以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A移動(dòng),設(shè)點(diǎn)P、Q移動(dòng)的時(shí)間為t秒.
(1)求直線AB的解析式;
(2)當(dāng)t為何值時(shí),△APQ與△AOB相似?
(3)當(dāng)t為何值時(shí),△APQ的面積為 個(gè)平方單位?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD中,ABDC,連接BD,BE平分∠ABD,BEAD,EBC和∠DCB的角平分線相交于點(diǎn)F,若∠ADC=110°,則∠F的度數(shù)為( 。

A. 115° B. 110° C. 105° D. 100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料: 小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如:,善于思考的小明進(jìn)行了以下探索:

設(shè)(其中均為整數(shù)),則有

.這樣小明就找到了一種把部分的式子化為平方式的方法.

請(qǐng)你仿照小明的方法探索并解決下列問題:

當(dāng)均為正整數(shù)時(shí),若,用含mn的式子分別表示,得      ;

2)利用所探索的結(jié)論,找一組正整數(shù),填空:    (      )2;

3)若,且均為正整數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點(diǎn)A,B,C三點(diǎn)在⊙O上,AE平分∠BAC,交⊙O于點(diǎn)E,交BC于點(diǎn)D,過點(diǎn)E作直線l∥BC,連結(jié)BE.
(1)求證:直線l是⊙O的切線;
(2)如果DE=a,AE=b,寫出求BE的長(zhǎng)的思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線y=2x﹣3與y軸交于點(diǎn)A,點(diǎn)A與點(diǎn)B關(guān)于x軸對(duì)稱,過點(diǎn)B作y軸的垂線l,直線l與直線y=2x﹣3交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)如果拋物線y=nx2﹣4nx+5n(n>0)與線段BC有唯一公共點(diǎn),求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2+2x+a﹣2=0.
(1)若該方程有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)該方程的一個(gè)根為1時(shí),求a的值及方程的另一根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于概率,下列說法正確的是(
A.莒縣“明天降雨的概率是75%”表明明天莒縣會(huì)有75%的時(shí)間會(huì)下雨
B.隨機(jī)拋擲一枚質(zhì)地均勻的硬幣,落地后一定反面向上
C.在一次抽獎(jiǎng)活動(dòng)中,中獎(jiǎng)的概率是1%,則抽獎(jiǎng)100次就一定會(huì)中獎(jiǎng)
D.同時(shí)拋擲兩枚質(zhì)地均勻硬幣,“一枚硬幣正面向上,一枚硬幣反面向上”的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y= 在第一象限的圖象經(jīng)過點(diǎn)B,則△OAC與△BAD的面積之差SOAC﹣SBAD為(

A.36
B.12
C.6
D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案