【題目】某年5月,我國南方某省A、B兩市遭受嚴(yán)重洪澇災(zāi)害,1.5萬人被迫轉(zhuǎn)移,鄰近縣市C、D獲知A、B兩市分別急需救災(zāi)物資200噸和300噸的消息后,決定調(diào)運物資支援災(zāi)區(qū).已知C市有救災(zāi)物資240噸,D市有救災(zāi)物資260噸,現(xiàn)將這些救災(zāi)物資全部調(diào)往A、B兩市.已知從C市運往A、B兩市的費用分別為每噸20元和25元,從D市運往往A、B兩市的費用別為每噸15元和30元,設(shè)從D市運往B市的救災(zāi)物資為x噸.

(1)請?zhí)顚懴卤?/span>

A(噸)

B(噸)

合計(噸)

C

   

   

240

D

   

x

260

總計(噸)

200

300

500

(2)設(shè)C、D兩市的總運費為w元,求wx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(3)經(jīng)過搶修,從D市到B市的路況得到了改善,縮短了運輸時間,運費每噸減少m元(m>0),其余路線運費不變.若C、D兩市的總運費的最小值不小于10320元,求m的取值范圍.

【答案】(1)x﹣60、300﹣x、260﹣x;(2)w=10x+10200(60≤x≤260);(3)m的取值范圍是0<m≤8.

【解析】1)根據(jù)題意可以將表格中的空缺數(shù)據(jù)補充完整;

(2)根據(jù)題意可以求得wx的函數(shù)關(guān)系式,并寫出x的取值范圍;

(3)根據(jù)題意,利用分類討論的數(shù)學(xué)思想可以解答本題.

1)D市運往Bx噸,

D市運往A市(260﹣x)噸,C市運往B市(300﹣x)噸,C市運往A200﹣(260﹣x)=(x﹣60)噸,

故答案為:x﹣60、300﹣x、260﹣x;

(2)由題意可得,

w=20(x﹣60)+25(300﹣x)+15(260﹣x)+30x=10x+10200,

w=10x+10200(60≤x≤260);

(3)由題意可得,

w=10x+10200﹣mx=(10﹣m)x+10200,

當(dāng)0<m<10時,

x=60時,w取得最小值,此時w=(10﹣m)×60+10200≥10320,

解得,0<m≤8,

當(dāng)m>10時,

x=260時,w取得最小值,此時,w=(10﹣m)×260+10200≥10320,

解得,m≤,

<10,

m>10這種情況不符合題意,

由上可得,m的取值范圍是0<m≤8.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線經(jīng)過點,

1求直線的解析式

2若直線與直線相交于點,求點的坐標(biāo);

3根據(jù)圖象,直接寫出關(guān)于的不等式的解集

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,O為直線AB上一點,過點O作射線OC,∠AOC=30°,將一直角三角尺(∠M=30°)的直角頂點放在點O處,一邊ON在射線OA上,另一邊OMOC都在直線AB的上方.

(1)若將圖1中的三角尺繞點O以每秒5°的速度,沿順時針方向旋轉(zhuǎn)t秒,當(dāng)OM恰好平分∠BOC時,如圖2

①求t值;

②試說明此時ON平分∠AOC

(2)將圖1中的三角尺繞點O順時針旋轉(zhuǎn),設(shè)∠AON=α,∠COM=β,當(dāng)ON在∠AOC內(nèi)部時,試求α與β的數(shù)量關(guān)系;

(3)若將圖1中的三角尺繞點O以每秒5°的速度沿順時針方向旋轉(zhuǎn)的同時,射線OC也繞點O以每秒8°的速度沿順時針方向旋轉(zhuǎn),如圖3,那么經(jīng)過多長時間,射線OC第一次平分∠MON?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形紙片ABCD中,AB6 cmBC8 cm,點EBC邊上一點,連接AE,并將AEB沿AE折疊,得到AEB′,以C,E,B′為頂點的三角形是直角三角形時,BE的長為____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=6,∠BAD的平分線與BC的延長線交于點E、與DC交于點F,且點F為邊DC的中點,∠ADC的平分線交AB于點M,交AE于點N,連接DE

(1) 求證:BC=CE

(2) DM=2,求DE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與x軸交點A(1,0),B(-3,0) .與y軸交點B(0,3),如圖1所示,D為拋物線的頂點。

(1)求拋物線的解析式;

(2)如圖1若R為y軸上的一個動點,連接AR,則RB+AR的最小值為

(3)在x軸上取一動點P(m,0),,過點P作x軸的垂線,分別交拋物線、CD、CB于點Q、F、E,如圖2所示,求證EF=EP.

(4)設(shè)此拋物線的對稱軸為直線MN,在直線MN上取一點T,使∠BTN=∠CTN.直接寫出點T的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖象(折線ABCDE)描述了一汽車在某一直線上的行駛過程中,汽車離出發(fā)地的距離s(千米)和行駛時間t(小時)之間的函數(shù)關(guān)系,根據(jù)圖中提供的信息,給出下列說法,其中正確的說法是(  )

A. 汽車共行駛了120千米 B. 汽車在整個行駛過程中平均速度為40千米

C. 汽車返回時的速度為80千米/ D. 汽車自出發(fā)后1.5小時至2小時之間速度不變

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,四邊形中,,,且,

試求:(1的度數(shù);(2)四邊形的面積(結(jié)果保留根號);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在8×8的方格中建立平面直角坐標(biāo)系,有點A(﹣2,2)、B(﹣3,1)、C(﹣1,0),P(a,b)是ABC的AC邊上點,將ABC平移后得到△A1B1C1,點P的對應(yīng)點為P1(a+4,b+2).

(1)畫出平移后的△A1B1C1,寫出點A1、C1的坐標(biāo);

(2)若以A、B、C、D為頂點的四邊形為平行四邊形,寫出方格中D點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案