【題目】某中學(xué)為了豐富學(xué)生的課余生活,計劃購買排球和籃球供球類興趣小組活動使用,若購買4個籃球和3個排球需用94元;若購買16個籃球和5個排球需用306元;
(1)求一個籃球和一個排球各多少元;
(2)該中學(xué)決定購買排球和籃球共40個,總費(fèi)用不超過550元,那么該中學(xué)至少可以購買多少個排球?
【答案】(1)購買一個籃球16元,購買一個排球10元;(2)15個
【解析】
(1)設(shè)每個排球x元,每個籃球y元,根據(jù)“購買4個籃球和3個排球需用94元;購買16個籃球和5個排球需用306元”,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;
(2)設(shè)購買籃球a個,則購買排球(40-a)個,根據(jù)總價=單價×數(shù)量結(jié)合購買排球和籃球的總費(fèi)用不超過550元,即可得出關(guān)于a的一元一次不等式,解之取其中的最小值整數(shù)值即可得出結(jié)論.
(1)設(shè)購買一個排球元,購買一個籃球元:
,
解得,
答:設(shè)購買一個籃球16元,購買一個排球10元;
(2)設(shè)該中學(xué)可以購買個排球,則購買籃球個:
,
解得,
答:該中學(xué)至少可以購買15個排球.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店經(jīng)銷甲、乙兩種商品現(xiàn)有如下信息:信息1:甲、乙兩種商品的進(jìn)貨單價之和是3元;信息2:甲商品零售單價比進(jìn)貨單價多1元,乙商品零售單價比進(jìn)貨單價的2倍少1元;信息3:按零售單價購買甲商品3件和乙商品2件,共付了12元.請根據(jù)以上信息,解答下列問題:
求甲、乙兩種商品的零售單價;
該商店平均每天賣出甲商品500件和乙商品1200件經(jīng)調(diào)查發(fā)現(xiàn),甲種商品零售單價每降元,甲種商品每天可多銷售100件商店決定把甲種商品的零售單價下降元在不考慮其他因素的條件下,當(dāng)m為多少時,商店每天銷售甲、乙兩種商品獲取的總利潤為1700元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的頂點(diǎn)A、B、C的坐標(biāo)分別為(0,5)(0,2)(4,2),直線l的解析式為y = kx+5-4k(k > 0).
(1)當(dāng)直線l經(jīng)過點(diǎn)B時,求一次函數(shù)的解析式;
(2)通過計算說明:不論k為何值,直線l總經(jīng)過點(diǎn)D;
(3)直線l與y軸交于點(diǎn)M,點(diǎn)N是線段DM上的一點(diǎn), 且△NBD為等腰三角形,試探究:
①當(dāng)函數(shù)y = kx+5-4k為正比例函數(shù)時,點(diǎn)N的個數(shù)有 個;
②點(diǎn)M在不同位置時,k的取值會相應(yīng)變化,點(diǎn)N的個數(shù)情況可能會改變,請直接寫出點(diǎn)N所有不同的個數(shù)情況以及相應(yīng)的k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),其中a>0.
(1)若方程有兩個實(shí)根,且方程有兩個相等的實(shí)根,求二次函數(shù)的解析式;
(2)若二次函數(shù)的圖象與x軸交于兩點(diǎn),且當(dāng)時,恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點(diǎn),以CD為直徑的⊙O分別交AC,BC于點(diǎn)E,F兩點(diǎn),過點(diǎn)F作FG⊥AB于點(diǎn)G.
(1)試判斷FG與⊙O的位置關(guān)系,并說明理由.
(2)若AC=3,CD=2.5,求FG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1和圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個小正方形的邊長均為1,線段AC的兩個端點(diǎn)均在小正方形的頂點(diǎn)上.
(1)在圖1中畫出以AB為斜邊的直角三角形ABC,點(diǎn)C在小正方形的頂點(diǎn)上,且;
(2)在圖2中畫出以AB為一邊的等腰三角形ABD,點(diǎn)D在小正方形的頂點(diǎn)上,且的面積為16.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙二人均從A地出發(fā),甲以60米/分的速度向東勻速行進(jìn),10分鐘后,乙以(60+m)米/分的速度按同樣的路線去追趕甲,乙出發(fā)5.5分鐘后,甲以原速原路返回,在途中與乙相遇,相遇后兩人均停止行進(jìn).設(shè)乙所用時間為t分鐘.
(1)當(dāng)m=6時,解答:
①設(shè)甲與A地的距離為,分別求甲向東行進(jìn)及返回過程中,與t的函數(shù)關(guān)系式(不寫t的取值范圍);
②當(dāng)甲、乙二人在途中相遇時,求甲行進(jìn)的總時間.
(2)若乙在出發(fā)9分鐘內(nèi)與甲相遇,求m的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐
操作發(fā)現(xiàn):
如圖1和圖2,已知點(diǎn)為正方形的邊和上的一個動點(diǎn)(點(diǎn),,除外),作射線,作于點(diǎn),于點(diǎn),于點(diǎn).
(1)如圖1,當(dāng)點(diǎn)在上(點(diǎn),除外)運(yùn)動時,求證:;
(2)如圖2,當(dāng)點(diǎn)在上(點(diǎn),除外)運(yùn)動時,請直接寫出線段,,之間的數(shù)量關(guān)系;
拓廣探索:
(3)在(1)的條件下,找出與相等的線段,并說明理由;
(4)如圖3,若點(diǎn)為矩形的邊上一點(diǎn),作射線,作于點(diǎn),于點(diǎn),于點(diǎn).若,,則_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com